精英家教网 > 高中数学 > 题目详情

【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为. 则其中正确命题的序号是(

A.B.C.D.

【答案】ABD

【解析】

①利用古典概型的概率求解判断.②利用独立重复实验的概率求解判断.③利用古典概型概率求解判断.④利用独立重复实验的概率求解判断.

一袋中有大小相同的4个红球和2个白球,

①从中任取3球,恰有一个白球的概率是故正确;

②从中有放回的取球6次,每次任取一球,每次抽到白球的概率为,则恰好有两次白球的概率为,故正确;

③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为,故错误;

④从中有放回的取球3次,每次任取一球,每次抽到红球的概率为:则至少有一次取到红球的概率为,故正确.

故选:ABD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,动点PQ从点出发在单位圆上运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,则PQ两点在第2019次相遇时,点P的坐标为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设公差不为0的等差数列的首项为1,且构成等比数列.

1)求数列的通项公式;

2)若数列满足1nN*,求的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角ABC的对边长abc成等比数列,,延长BCD,若,则面积的最大值为(

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.

(1)求数列{an}的通项公式与前n项和Sn

(2)设Tn为数列{}的前n项和,问是否存在常数m,使Tn=m[],若存在,求m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我市经济的快速发展,政府对民生也越来越关注. 市区现有一块近似正三角形土地ABC(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形DBEDAGECF其中分别相切于点DE,且无重叠,剩余部分(阴影部分)种植草坪. 设BD长为x(单位:百米,草坪面积为S(单位:百米2).

(1)试用x分别表示扇形DAGDBE的面积,并写出x的取值范围;

(2)当x为何值时草坪面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.两条相交直线在同一平面内的射影必为相交直线

B.不共线三点到平面的距离相等,则这三点确定的平面不一定与平面平行

C.对确定的两异面直线,过空间任一点有且只有一个平面与两异面直线都平行

D.两个相交平面的交线是一条线段

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当我们所处的北半球为冬季的时候,新西兰的惠灵顿市恰好是盛夏,因此北半球的人们冬天愿意去那里旅游,下面是一份惠灵顿机场提供的月平均气温统计表.

(月份)

1

2

3

4

5

6

7

8

9

10

11

12

17.3

17.9

17.3

15.8

13.7

11.6

10.06

9.5

10.06

11.6

13.7

15.8

1)根据这个统计表提供的数据,为惠灵顿市的月平均气温作出一个函数模型;

2)当自然气温不低于13.7℃时,惠灵顿市最适宜旅游,试根据你所确定的函数模型,确定惠灵顿市的最佳旅游时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量(单位:吨)的历史统计数据,得到如下频率分布表:

将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.

(1)求在未来3年里,至多1年污水排放量的概率;(2)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元.为减少损失,现有三种应对方案:

方案一:防治350吨的污水排放,每年需要防治费3.8万元;

方案二:防治310吨的污水排放,每年需要防治费2万元;

方案三:不采取措施.

试比较上述三种文案,哪种方案好,并请说明理由.

查看答案和解析>>

同步练习册答案