精英家教网 > 高中数学 > 题目详情

【题目】如图,圆,点是圆上任意一点,线段的垂直平分线和半径相交于点.

(1)求动点的轨迹的方程;

(2)曲线与直线相交于两点(点轴上方),且.点是曲线上位于直线两侧的两个动点,且.求四边形面积的取值范围.

【答案】1

2

【解析】

(1)连接,根据题意可得,可得动点的轨迹是以为焦点,长轴长为的椭圆,则方程求可;

2)由,所以,设直线,联立,利用韦达定理得,同理得,设四边形面积为,可得,求其范围即可.

(1)连接

根据题意,则

故动点的轨迹是以为焦点,长轴长为的椭圆,设其方程为

可知,则

所以点的轨迹的方程为

故椭圆的标准方程为

(2)由题意可知,直线,直线的斜率都存在且不等于0,

因为,所以

设直线的斜率为,则直线

依题意,方程①有两个不相等的实数根,即根的判别式成立,

化简得,解得

因为2是方程①的一个解,所以

所以

当方程①的判别式时,,此时直线与椭圆相切,

由题意,可知直线的方程为

同理,易得

由于点是椭圆上位于直线两侧的两个动点,

且能存在四边形,则直线的斜率需满足

设四边形面积为,则

由于,故

时,,即,即.

所以四边形面积的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学将100名高一新生分成水平相同的甲,乙两个平行班,每班50.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为成绩优秀”.

1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均成绩优秀的概率;

2)由以上统计数据填写下面2x2列联表,并判断是否有的把握认为成绩优秀与教学方式有关.


甲班(A方式)

乙班(B方式)

总计

成绩优秀




成绩不优秀




总计




附:

/tr>

P

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,右焦点到直线的距离为.

1)求椭圆的标准方程;

2)定义两点所在直线的斜率,若四边形为椭圆的内接四边形,且相交于原点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若函数有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,且,若的面积为,则的最小值为( )

A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济水平及个人消费能力的提升,我国居民对精神层面的追求愈加迫切,如图是2007年到2017年我国城镇居民教育、文化、服务人均消费支出同比增速的折线图,图中显示2007年的同比增速为10% 2007年与2006年同时期比较2007年的人均消费支出费用是2006年的1.1.则下列表述中正确的是(

A.2007年到2017年,同比增速的中位数约为10%

B.2007年到2017年,同比增速的极差约为12%

C.2011年我国城镇居民教育、文化、服务人均消费支出的费用最高

D.2007年到2017年,我国城镇居民教育、文化、服务人均消费支出的费用逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:给定整数i,如果非空集合满足如下3个条件:

;②;③,若,则.

则称集合A为“减i集”

1是否为“减0集”?是否为“减1集”?

2)证明:不存在“减2集”;

3)是否存在“减1集”?如果存在,求出所有“减1集”;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.

(1)求椭圆的标准方程;

(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线axby1与圆x2y21相交于AB两点(其中ab是实数),且AOB是直角三角形(O是坐标原点),则点P(ab)与点(0,1)之间距离的最小值为( )

A.0B.C.1D.1

查看答案和解析>>

同步练习册答案