分析 (Ⅰ)连接AB1,交A1E于点N,连接MN,由E为BB1的中点,且$\overrightarrow{AM}$=$\frac{2}{3}$$\overrightarrow{AC}$,得MN∥CB1,再由线面平行的判定得CB1∥平面A1EM;
(Ⅱ)由题意可得${V}_{E-{C}_{1}{A}_{1}M}={V}_{B-{C}_{1}{A}_{1}M}$,结合棱锥体积公式求解.
解答 (Ⅰ)证明:如图,![]()
连接AB1,交A1E于点N,连接MN,
∵E为BB1的中点,∴$AN=\frac{2}{3}A{B}_{1}$,
又$\overrightarrow{AM}$=$\frac{2}{3}$$\overrightarrow{AC}$,∴MN∥CB1,
在△ACB1中,∵MN∥CB1,MN?面A1EM,CB1?面A1EM,
∴CB1∥平面A1EM;
(Ⅱ)解:由AA1∥BB1,得${V}_{E-{C}_{1}{A}_{1}M}={V}_{B-{C}_{1}{A}_{1}M}$,
由AA1⊥面A1B1C1,得AA1⊥A1B1,
又C1A1⊥A1B1,AA1∩C1A1=A1,
∴A1B1⊥面AA1C1C,
∴${V}_{B-{C}_{1}{A}_{1}M}=\frac{1}{3}•{A}_{1}{B}_{1}•{S}_{△M{A}_{1}{C}_{1}}$=$\frac{1}{3}×2×\frac{1}{2}×1×\sqrt{2}=\frac{\sqrt{2}}{3}$.
点评 本题考查直线与平面平行的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18 | B. | 19 | C. | 20 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.40 | B. | 0.35 | C. | 0.30 | D. | 0.25 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{5}{7}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com