精英家教网 > 高中数学 > 题目详情
9.已知椭圆Γ的左、右焦点分别为F1(-1,0)、F2(1,0).经过点F1且倾斜角为θ(0<θ<π)的直线l与椭圆Γ交于A、B两点(其中点A在x轴上方),△ABF2的周长为8.
(1)求椭圆Γ的标准方程;
(2)如图,把平面xOy沿x轴折起来,使y轴正半轴和x轴确定的半平面,与y负半轴和x轴所确定的半平面互相垂直.
①若θ=$\frac{π}{3}$,求异面直线AF1和BF2所成角的大小;
②若折叠后△ABF2的周长为$\frac{15}{2}$,求θ的大小.

分析 (1)由椭圆的定义可知:4a=8,则a=2,c=1,b2=a2-c2=3,即可求得椭圆Γ的标准方程;
(2)①当θ=$\frac{π}{3}$,求得直线方程,代入椭圆方程,求得A和B坐标,分别求得$\overrightarrow{{F}_{1}A}$=(0,1,$\sqrt{3}$),$\overrightarrow{B{F}_{2}}$=(-$\frac{3\sqrt{3}}{5}$,$\frac{13}{5}$,0),cosθ=$\frac{丨\overrightarrow{{F}_{1}A}•\overrightarrow{B{F}_{2}}丨}{丨\overrightarrow{{F}_{1}A}丨•丨\overrightarrow{B{F}_{2}}丨}$=$\frac{13}{28}$;
②当方法一:θ=$\frac{π}{2}$,丨AB丨=$\frac{3}{2}$$\sqrt{2}$,丨AF2丨=丨BF2丨=$\frac{5}{2}$,不满足题意,当θ≠$\frac{π}{2}$时,设直线l方程,由韦达定理及丨AB丨-丨A′B′丨=$\frac{1}{2}$,即可求得k的值,由k=tanθ,即可求得θ的大小;
方法二:设直线my=x+1,代入椭圆方程,由韦达定理及两点之间的距离公式求得m的值,即可求得θ的大小.

解答 解:(1)设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),c=1
由椭圆的性质可知:丨AF1丨+丨AF2丨=2a,丨BF1丨+丨BF2丨=2a,
则△ABF2的周长L=4a=8,即a=2,b2=a2-c2=3,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)①设直线l:y-0=$\sqrt{3}$(x+1),
代入椭圆方程$\left\{\begin{array}{l}{y=\sqrt{3}(x+1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=0}\\{y=\sqrt{3}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{8}{5}}\\{y=-\frac{3\sqrt{3}}{5}}\end{array}\right.$,
则A(0,$\sqrt{3}$),B(-$\frac{8}{5}$,-$\frac{3\sqrt{3}}{5}$),
在空间直角坐标系中,F1(0,-1,0),A(0,0,$\sqrt{3}$),
B($\frac{3\sqrt{3}}{5}$,$\frac{8}{5}$,0),F2(0,1,0),$\overrightarrow{{F}_{1}A}$=(0,1,$\sqrt{3}$),$\overrightarrow{B{F}_{2}}$=(-$\frac{3\sqrt{3}}{5}$,$\frac{13}{5}$,0),
异面直线AF2和BF2所成角为θ,则cosθ=$\frac{丨\overrightarrow{{F}_{1}A}•\overrightarrow{B{F}_{2}}丨}{丨\overrightarrow{{F}_{1}A}丨•丨\overrightarrow{B{F}_{2}}丨}$=$\frac{13}{28}$,
∴异面直线AF1和BF2所成角的大小arccos$\frac{13}{28}$;
②由丨A′F2丨+丨B′F丨+丨A′B′丨=$\frac{15}{2}$,丨AF2丨+丨BF丨+丨AB丨=8,则丨AB丨-丨A′B′丨=$\frac{1}{2}$,
当θ=$\frac{π}{2}$,丨AB丨=$\frac{3}{2}$$\sqrt{2}$,丨AF2丨=丨BF2丨=$\frac{5}{2}$,不满足题意,
当θ≠$\frac{π}{2}$时,设l:y-0=k(x+1),A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{y=k(x+1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2+8k2x+(4k2-12)=0,
则A,B在新图形中对应的点A′,B′,则A′(x1,y1,0),B′(x2,0,y2),
则$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$-$\sqrt{({x}_{1}-{x}_{2})^{2}+{y}_{1}^{2}+{y}_{2}^{2}}$=$\frac{1}{2}$,
解得:k=±$\frac{3\sqrt{35}}{14}$,
故θ=arctan$\frac{3\sqrt{35}}{14}$,或θ=π-arctan$\frac{3\sqrt{35}}{14}$,
方法二:由丨A′F2丨+丨B′F丨+丨A′B′丨=$\frac{15}{2}$,丨AF2丨+丨BF丨+丨AB丨=8,则丨AB丨-丨A′B′丨=$\frac{1}{2}$,
设折叠前A(x1,y1),B(x2,y2),直线my=x+1,
则$\left\{\begin{array}{l}{my=x+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3m2+4)y2-6my-9=0,
则y1+y2=$\frac{6m}{3{m}^{2}+4}$,y1•y2=-$\frac{9}{3{m}^{2}+4}$,
则丨A′B′丨=$\sqrt{({x}_{1}-{x}_{2})^{2}+{y}_{1}^{2}+(-{y}_{2})^{2}}$,丨AB丨=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$,
∴丨AB丨-丨A′B′丨=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$-$\sqrt{({x}_{1}-{x}_{2})^{2}+{y}_{1}^{2}+(-{y}_{2})^{2}}$=$\frac{1}{2}$,(1)
∴$\frac{-2{y}_{1}{y}_{2}}{\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}+\sqrt{({x}_{1}-{x}_{2})^{2}+{y}_{1}^{2}+{y}_{2}^{2}}}}$=$\frac{1}{2}$,
∴$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$+$\sqrt{({x}_{1}-{x}_{2})^{2}+{y}_{1}^{2}+(-{y}_{2})^{2}}$=-4y1y2,(2)
∴由(1),(2)可知:$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=$\frac{1}{4}$-2y1y2
∴(x1-x2)+(y1-y2)=(1+m2)(y1-y2)=($\frac{1}{4}$-2y1y22
∴(1+m2)[($\frac{6m}{3{m}^{2}+4}$)2+$\frac{36}{3{m}^{2}+4}$]=($\frac{1}{4}$-2×$\frac{-9}{3{m}^{2}+4}$)2
即144($\frac{1+m}{3{m}^{2}+4}$)2=($\frac{1}{4}$+$\frac{18}{3{m}^{2}+4}$)2
$\frac{12+12{m}^{2}}{3{m}^{2}+4}$=$\frac{1}{4}$+$\frac{18}{3{m}^{2}+4}$,则12m2+12=$\frac{3}{4}$m2+1+18,
解得:m2=$\frac{28}{45}$,
故θ=arctan$\frac{3\sqrt{35}}{14}$或θ=π-arctan$\frac{3\sqrt{35}}{14}$.

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,椭圆方程与空间向量的综合应用,考查计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知某几何体的三视图如图,则该几何体的表面积是(  )
A.$4+4\sqrt{3}$B.$4+6\sqrt{3}$C.$8+6\sqrt{3}$D.$8+8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=a-\frac{1}{|x|}(a≠0)$.
(1)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围;
(2)若函数y=f(x)在[m,n]上的值域是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则它的表面积为(  )
A.12πB.57πC.45πD.81π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三棱锥P-ABC中,侧棱PA=2,PB=PC=$\sqrt{6}$,则当三棱锥P-ABC的三个侧面的面积和最大时,经过点P,A,B,C的球的表面积是(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某几何体的三视图如图所示(其中俯视图中的圆弧是半圆),则该几何体的体积为32+8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知?x0∈R使不等式|x-1|-|x-2|≥t成立.
(1)求满足条件的实数t的集合T;
(2)若m>1,n>1,对?t∈T,不等式log3m•log3n≥t恒成立,求mn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,若B=$\frac{π}{2}$,a=$\sqrt{6}$,sin2B=2sinAsinC,则△ABC的面积S△ABC=(  )
A.$\frac{3}{2}$B.3C.$\sqrt{6}$D.6

查看答案和解析>>

同步练习册答案