精英家教网 > 高中数学 > 题目详情
16.在△ABC中,A=$\frac{π}{4}$,cosB=$\frac{\sqrt{10}}{10}$.
(1)求cosC;
(2)设BC=$\sqrt{5}$,求△ABC的面积.

分析 (1)由已知利用同角三角函数基本关系式可求sinB,利用三角形内角和定理,诱导公式,两角和的余弦函数公式即可计算cosC的值.
(2)由(1)利用同角三角函数基本关系式可求sinC,利用正弦定理可求AC的值,进而利用三角形面积公式即可计算得解.

解答 解:(1)∵cosB=$\frac{\sqrt{10}}{10}$.
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3\sqrt{10}}{10}$,
∴cosC=-cos(A+B)=sinAsinB-cosAcosB=$\frac{\sqrt{2}}{2}×\frac{3\sqrt{10}}{10}$-$\frac{\sqrt{2}}{2}×\frac{\sqrt{10}}{10}$=$\frac{\sqrt{5}}{5}$.
(2)∵cosC=$\frac{\sqrt{5}}{5}$,
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{5}}{5}$,
∵AC=$\frac{BCsinB}{sinA}$=$\frac{\sqrt{5}×\frac{3\sqrt{10}}{10}}{\frac{\sqrt{2}}{2}}$=3,
∴S△ABC=$\frac{1}{2}$BC•AC•sinC=$\frac{1}{2}×$$\sqrt{5}$×3×$\frac{2\sqrt{5}}{5}$=3.

点评 本题主要考查了同角三角函数基本关系式,三角形内角和定理,诱导公式,两角和的余弦函数公式,正弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如果函数f(x)=ax2+2x-3在区间(-∞,4)上是单调递增的,则实数a的取值范围是(  )
A.(-$\frac{1}{4}$,+∞)B.[-$\frac{1}{4}$,+∞)C.[-$\frac{1}{4}$,0)D.[-$\frac{1}{4}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{-lnx-x,x>0}\\{-ln(-x)+x,x<0}\end{array}\right.$,则关于m的不等式f($\frac{1}{m}$)<ln$\frac{1}{2}$-2的解集为(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在正三角形ABC中,D是BC边上的点,若AB=3,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|-1<x<3},B={x|x>1},则集合A∩B=(  )
A.{-1,3}B.{-1,1}C.(1,3)D.{-1,+∞}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,阴影部分的面积S是h的函数(0≤h≤H),则该函数的图象是下面四个图形中的(  ) 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=5,则|PF2|=(  )
A.1或9B.6C.9D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题“若p,则q”,假设其逆命题为真,则p是q的(  )
A.充分条件B.必要条件
C.既不是充分条件也不是必要条件D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
A.若m∥n,m⊥α,则n⊥αB.若m∥α,n∥α,则m∥nC.若m⊥α,m∥β,则α∥βD.若m∥α,α⊥β,则m⊥β

查看答案和解析>>

同步练习册答案