精英家教网 > 高中数学 > 题目详情
8.设P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=5,则|PF2|=(  )
A.1或9B.6C.9D.以上都不对

分析 由双曲线的方程、渐近线的方程求出a,由双曲线的定义求出|PF2|.

解答 解:由双曲线的方程、渐近线的方程可得$\frac{3}{2}=\frac{3}{a}$,
∴a=2.由双曲线的定义可得||PF2|-5|=4,
∵|PF1|=5,∴P在双曲线的左支上,
∴|PF2|=9,
故选:C.

点评 本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,由双曲线的方程、渐近线的方程求出a是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{{x}^{2}+sinx}{sinx}$,若f($\frac{π}{8}$)=a,则f(-$\frac{π}{8}$)=(  )
A.1-aB.2-aC.1+aD.2+a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=x2-2x+7.
(1)求f(2)的值;
(2)求f(x-1)和f(x+1)的解析式;
(3)求f(x+1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,A=$\frac{π}{4}$,cosB=$\frac{\sqrt{10}}{10}$.
(1)求cosC;
(2)设BC=$\sqrt{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数g(x)=$\frac{{4}^{x}-a}{{2}^{x}}$是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a+b的值.
(2)若对任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.分别求出满足下列条件的椭圆的标准方程:
(1)短轴长为6,两个焦点间的距离为8;
(2)离心率e=$\frac{{\sqrt{3}}}{2}$,且椭圆经过点(4,2$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=loga(2x+1)-3必过的定点是(  )
A.(1,0)B.(0,1)C.(0,-3)D.(1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某农场预算用5600元购买单价为50元(每吨)的钾肥和20元(每吨)的氮肥,希望使两种肥料的总数量(吨)尽可能的多,但氮肥数不少于钾肥数,且不多于钾肥数的1.5倍.
(Ⅰ)设买钾肥x吨,买氮肥y吨,按题意列出约束条件、画出可行域,并求钾肥、氮肥各买多少才行?
(Ⅱ)已知A(10,0),O是坐标原点,P(x,y)在(Ⅰ)中的可行域内,求$s=\frac{{\overrightarrow{OA}•\overrightarrow{OP}}}{{|{\overrightarrow{OP}}|}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(3,$\frac{π}{2}$),点B的极坐标为(6,$\frac{π}{6}$),曲线C:(x-1)2+y2=1
(1)求曲线C和直线AB的极坐标方程;
(2)过点O的射线l交曲线C于M点,交直线AB于N点,若|OM||ON|=2,求射线l所在直线的直角坐标方程.

查看答案和解析>>

同步练习册答案