精英家教网 > 高中数学 > 题目详情
18.若${({\sqrt{x}+\frac{3}{x}})^n}$的展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.

分析 由条件求得展开式的各项系数的和与各项二项式系数的和,从而根据各项系数的和与各项二项式系数的和之比为64,求得n的值.

解答 解:令x=1,可得${({\sqrt{x}+\frac{3}{x}})^n}$的展开式中,各项系数的和为4n
而它的各项二项式系数的和2n,根据题意可得$\frac{{4}^{n}}{{2}^{n}}$=2n=64,∴n=6,
故答案为:6.

点评 本题主要考查二项式定理的应用,注意各项系数的和与各项二项式系数的和的区别,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知f(x)是R上的奇函数,且x>0时,f(x)=x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知13x3+mx2+11x+n能被13x2-6x+5整除,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a=5${\;}^{{5}^{5}}$,计算某个星期一后的第a天是星期几?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是某几何体的三视图,其中正视图、左视图均为正方形,俯视图是腰长为2的等腰三角腰形,则该几何体的体积是(  )
A.$\frac{8}{3}$B.$\frac{8}{3}$$\sqrt{2}$C.$\frac{4}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是梯形,其中AD∥BC,BA⊥AD,AC与BD交于点O,M是AB边上的点,已知PA=AD=4,AB=3,BC=2.
(1)求证:BC⊥PM;
(2)设平面PMC与平面PAB所成锐二面角为θ,求cosθ的最大值与最小值;
(3)已知AM=2BM,且N是PM上一点,且ON∥平面PCD,求$\frac{PN}{PM}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,∠BAD=$\frac{π}{3}$.
(1)求证:BC∥平面AED;
(2)求证:AC⊥面BDEF;
(3)若BF=BD=a,求四棱锥A-BDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知3$\overrightarrow{OA}$+2$\overrightarrow{OB}$=(13,1),$\overrightarrow{OA}$-$\overrightarrow{OB}$=(1,-3).
(1)求向量$\overrightarrow{OA}$与$\overrightarrow{OB}$;
(2)设向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为θ,求cosθ的值;
(3)以向量$\overrightarrow{OA}$与$\overrightarrow{OB}$为邻边作平行四边形OACB,求向量$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC为等腰直角三角形,|CA|=|CB|,|AB|=4,O为AB中点,动点P满足条件:|PO|2=|PA|•|PB|,则线段CP长的最小值为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.4

查看答案和解析>>

同步练习册答案