精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=$\sqrt{3}$sin$\frac{πx}{m}$.若存在x0使$f({x_0})=±\sqrt{3}$且满足x${\;}_{0}^{2}$+[f(x0)]2<m2,则实数m的取值范围是(  )
A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)

分析 由$f({x_0})=±\sqrt{3}$,[f(x0)]2=3,求导,令f′(x0)=0,求得$\frac{{x}_{0}}{m}$=k+$\frac{1}{2}$,即可求得丨x0丨≥丨$\frac{m}{2}$丨,即x${\;}_{0}^{2}$+[f(x0)]2≥$\frac{{m}^{2}}{4}$+3,由x${\;}_{0}^{2}$+[f(x0)]2<m2,求得m2>$\frac{{m}^{2}}{4}$+3,求得m的取值范围.

解答 解:由题意知:$f({x_0})=±\sqrt{3}$,
∴[f(x0)]2=3,
∵f′(x0)=$\frac{π}{m}$•$\sqrt{3}$cos$\frac{π{x}_{0}}{m}$=0,
∴$\frac{π{x}_{0}}{m}$=kπ+$\frac{π}{2}$,(k∈Z),
∴$\frac{{x}_{0}}{m}$=k+$\frac{1}{2}$,(k∈Z),即丨$\frac{{x}_{0}}{m}$丨=丨k+$\frac{1}{2}$丨≥$\frac{1}{2}$,
∴丨x0丨≥丨$\frac{m}{2}$丨,即x${\;}_{0}^{2}$+[f(x0)]2≥$\frac{{m}^{2}}{4}$+3,
而已知x${\;}_{0}^{2}$+[f(x0)]2<m2
∴m2>$\frac{{m}^{2}}{4}$+3,
故$\frac{3{m}^{2}}{4}$>3,解得m>2或m<-2,
故答案选:C.

点评 本题考查正弦函数图象及性质,导数的运算,考查利用导数研究函数的极值,不等式的解法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设向量$\vec a$,$\vec b$不平行,向量$λ\vec a+\vec b$与$\vec a+2\vec b$平行,则实数λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义域为R的函数f(x)对任意实数x,y满足:$\frac{f(x)+f(y)}{2}=f(\frac{x+y}{2})cos\frac{π(x-y)}{2}$,且$f(0)=f(1)=0,f(\frac{1}{2})=1$,并且当$x∈(0,\frac{1}{2})时,f(x)>0$.给出如下结论:
①函数f(x)是偶函数;
②函数f(x)在$(-\frac{1}{2},\frac{1}{2})$上单调递增;
③函数f(x)是以2为周期的周期函数;
④$f(-\frac{5}{2})=0$
其中正确的结论是(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在区间[0,3]上随机取两个数a、b,则其中使函数f(x)=-bx+a+1在[0,1]内有零点的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{7}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.制造某种产品,计划经过两年要使成本降低36%,则平均每年应降低成本20%.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果B1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥平面ABCD;③EF与AC异面;④AC∥面EFB.其中一定正确的有(  )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,则输出的S=(  )
A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,则该零件的表面积为(单位:cm2)(  )
A.$27\sqrt{2}+9\sqrt{5}+9$B.$27\sqrt{2}+18\sqrt{5}$C.$9\sqrt{2}+9\sqrt{5}+27$D.$36+9\sqrt{5}+18\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.现今社会,有些物品价格时效性强,某购物网店在销售一种圣诞礼品的一个月(30天)中,圣诞前15天价格呈直线上升,而圣诞过后15天其价格呈直线下降,现统计出其中4天的价格如下表:
时间第4天第8天第16天第22天
价格(元)23242218
(1)写出价格f(x)关于时间x的函数关系式(x表示投放市场的第x(x∈N)天);
(2)销售量g(x)与时间x的函数关系可近似为:g(x)=-$\frac{1}{3$x+38(1≤x≤30,x∈N),则该网店在这个月销售该礼品时,第几天销售额最高?最高为多少元?

查看答案和解析>>

同步练习册答案