精英家教网 > 高中数学 > 题目详情
9.现今社会,有些物品价格时效性强,某购物网店在销售一种圣诞礼品的一个月(30天)中,圣诞前15天价格呈直线上升,而圣诞过后15天其价格呈直线下降,现统计出其中4天的价格如下表:
时间第4天第8天第16天第22天
价格(元)23242218
(1)写出价格f(x)关于时间x的函数关系式(x表示投放市场的第x(x∈N)天);
(2)销售量g(x)与时间x的函数关系可近似为:g(x)=-$\frac{1}{3$x+38(1≤x≤30,x∈N),则该网店在这个月销售该礼品时,第几天销售额最高?最高为多少元?

分析 (1)价格直线上升,直线下降,说明价格函数f(x)是一次函数,由表中对应关系用待定系数法易求f(x)的表达式;
(2)由销售额=销售量×时间,得日销售额函数S(x)的解析式,从而求出S(x)的最大值.

解答 解:(1)由题意知,当1≤x<15时,一次函数y=ax+b过点A(4,23),B(8,24),代入函数求得a=$\frac{1}{4}$,b=22;
当15≤x≤30时,一次函数y=kx+m过点C(16,22),D(22,18),代入函数求得k=-$\frac{2}{3}$,m=$\frac{98}{3}$;
∴函数解析式为:y=f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+22,1≤x<15,x∈N}\\{-\frac{2}{3}x+\frac{98}{3},15≤x≤30,x∈N}\end{array}\right.$;
(2)设日销售额为S元,当1≤x<15时,S(x)=($\frac{1}{4}$x+22)•(-$\frac{1}{3$x+38)=-$\frac{1}{12}$(x-13)2+$\frac{10171}{12}$;
∴当x=13时,函数有最大值S(x)max=$\frac{10171}{12}$(元);
当15≤x≤30时,S(x)=(-$\frac{2}{3}$x+$\frac{98}{3}$)•(-$\frac{1}{3$x+38)=$\frac{2}{9}$(x2-163x+5586);
∴当x=30时,s(x)max=$\frac{1064}{3}$(元).
综上所知,日销售额最高是在第13天,最高值为$\frac{10171}{12}$元.

点评 本题考查函数模型的构建,考查求分段函数的解析式和最大值的应用题,考查求二次函数在闭区间上的最大值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\sqrt{3}$sin$\frac{πx}{m}$.若存在x0使$f({x_0})=±\sqrt{3}$且满足x${\;}_{0}^{2}$+[f(x0)]2<m2,则实数m的取值范围是(  )
A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.当x∈[0,1]时,不等式ax3-x2+4x+3≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,$\overrightarrow{AB}=(x,y),\overrightarrow{AC}$=(u,v),试用x,y,u,v表示△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)的导函数f′(x)的图象如图所示,那么f(x)的图象最有可能是图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示是沿圆锥的两条母线将圆锥削去一部分后所得几何体的三视图,其体积为$\frac{16π}{9}+\frac{{2\sqrt{3}}}{3}$,则圆锥的母线长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线y=ax+a与圆x2+y2=1的位置关系一定是(  )
A.与a的取值有关B.相切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥CD,PA=AD,M、N分别为AB、PC的中点.求证:
(Ⅰ)MN∥平面PAD;
(Ⅱ)MN⊥CD;
(Ⅲ)MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的定义域:
(1)f(x)=$\sqrt{\sqrt{4-{x}^{2}}-1}$;
(2)f(x)=$\frac{ln(1-|x-1|)}{x-1}$.

查看答案和解析>>

同步练习册答案