精英家教网 > 高中数学 > 题目详情
17.在△ABC中,$\overrightarrow{AB}=(x,y),\overrightarrow{AC}$=(u,v),试用x,y,u,v表示△ABC的面积.

分析 根据向量夹角的余弦公式可求出cosA,进而求出sinA,这样根据三角形面积公式便可得出△ABC的面积.

解答 解:$cosA=\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{xu+yv}{\sqrt{{x}^{2}+{y}^{2}}\sqrt{{u}^{2}+{v}^{2}}}$;
∴$sinA=\sqrt{1-co{s}^{2}A}$=$\sqrt{1-\frac{(xu+yv)^{2}}{({x}^{2}+{y}^{2})({u}^{2}+{v}^{2})}}$=$\frac{|xv-yu|}{\sqrt{{x}^{2}+{y}^{2}}\sqrt{{u}^{2}+{v}^{2}}}$;
∴${S}_{△ABC}=\frac{1}{2}|\overrightarrow{AB}||\overrightarrow{AC}|sinA$=$\frac{1}{2}•\sqrt{{x}^{2}+{y}^{2}}\sqrt{{u}^{2}+{v}^{2}}•\frac{|xv-yu|}{\sqrt{{x}^{2}+{y}^{2}}\sqrt{{u}^{2}+{v}^{2}}}$=$\frac{1}{2}|xv-yu|$.

点评 考查向量数量积的坐标运算,根据向量坐标求向量长度,向量夹角的余弦公式,以及三角形面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在区间[0,3]上随机取两个数a、b,则其中使函数f(x)=-bx+a+1在[0,1]内有零点的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{7}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,则该零件的表面积为(单位:cm2)(  )
A.$27\sqrt{2}+9\sqrt{5}+9$B.$27\sqrt{2}+18\sqrt{5}$C.$9\sqrt{2}+9\sqrt{5}+27$D.$36+9\sqrt{5}+18\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,PA=PD,M为CD的中点,BD⊥PM.
(1)求证:平面PAD⊥平面ABCD;
(2)若∠PAD=60°,求直线AB与平面PBM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z1=1+7i,z2=-2-4i,则z1+z2等于(  )
A.-1+3iB.-1+11iC.3+3iD.3+11i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知tanθ=-$\frac{3}{4}$,求2+sinθcosθ-cos2θ的值.
(2)设f(θ)=$\frac{{2{{cos}^3}θ+{{sin}^2}(2π-θ)+cos(-θ)-3}}{{2+2{{cos}^2}(π+θ)+cos(2π-θ)}}$,求f($\frac{π}{3}$).
(3)函数y=cos2x-3cosx+2的最小值是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.现今社会,有些物品价格时效性强,某购物网店在销售一种圣诞礼品的一个月(30天)中,圣诞前15天价格呈直线上升,而圣诞过后15天其价格呈直线下降,现统计出其中4天的价格如下表:
时间第4天第8天第16天第22天
价格(元)23242218
(1)写出价格f(x)关于时间x的函数关系式(x表示投放市场的第x(x∈N)天);
(2)销售量g(x)与时间x的函数关系可近似为:g(x)=-$\frac{1}{3$x+38(1≤x≤30,x∈N),则该网店在这个月销售该礼品时,第几天销售额最高?最高为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α是三角形的内角,则函数y=-2sin2α-3cosα+7的最值情况是(  )
A.既没有最大值,又没有最小值B.既有最大值10,又有最小值$\frac{31}{8}$
C.只有最大值10?D.只有最小值$\frac{31}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,长方体ABCD-A1B1C1D1中,已知AB=BC=2,AA1=1,线段AC1的三个视图所在的直线所成的最小角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

同步练习册答案