精英家教网 > 高中数学 > 题目详情
5.圆内接四边形ABCD中,AB=3,BC=4,CD=5,AD=6,则cosA等于(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{1}{19}$D.$\frac{1}{21}$

分析 连接BD,利用余弦定理求出cosA,cosC的关系,结合圆内接四边形的对角互补,运用诱导公式求解cosA的值.

解答 解:如图,连接BD,
由余弦定理得,BD2=9+36-2×3×6cosA=45-36cosA,
又BD2=16+25-2×4×5cosC=41-40cosC,
∵A+C=180°,∴cosC=-cosA,
∴45-36cosA=41+40cosA,解得cosA=$\frac{1}{19}$.
故选:C.

点评 本题主要考查了余弦定理,以及圆内接四边形的性质:对角互补,同时考查了运算求解的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.某市高二理科学生数学考试的成绩x服从正态分布,其密度函数为f(x)=$\frac{1}{\sqrt{2π}σ}$e${\;}^{\frac{(x-μ)^{2}}{2{σ}^{2}}}$,密度曲线如图,已知该市理科学生总数是10000人,则成绩位于(65,85]的人数约是9544.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2$\sqrt{3}$cos($\frac{π}{2}$-x)cosx-sin2x+cos2x(x∈R).
(1)求函数f(x)的最小正周期及单调递增区间;
(2)若f(x0)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$和$\overrightarrow{b}$的夹角为120°,且$\overrightarrow{m}$=$\frac{2\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$,$\overrightarrow{n}$=-$\frac{3\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{2\overrightarrow{b}}{|\overrightarrow{b}|}$,求$\overrightarrow{m}$与$\overrightarrow{n}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{{e}^{x}+b}{a{e}^{x}+1}$是定义在R上的奇函数.
(1)求实数a,b的值;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知直线L过定点A(0,3),且与圆C:(x-3)2+(x+3)2=9相切,求该直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\frac{sinα}{sinβ}$=3,$\frac{cosα}{cosβ}$=$\frac{1}{2}$,则$\frac{sin2α}{sin2β}$+$\frac{cos2α}{cos2β}$的值等于$\frac{49}{58}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tanθ=2,则$\frac{sinθ}{si{n}^{3}θ+co{s}^{3}θ}$=(  )
A.$\frac{10}{9}$B.$\frac{9}{7}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.2$\sqrt{5}$是数列$\sqrt{2}$,$\sqrt{5}$,2$\sqrt{2}$,$\sqrt{11}$,…的第(  )项.
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案