【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用、、三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表:
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
甲 | 4次 | 6次 | 2次 | 12次 | |
乙 | 3次 | 6次 | 3次 | 12次 | |
丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量,求随机变量的分布列和数学期望.
【答案】(1);(2)分布列见解析,数学期望.
【解析】试题分析:(1)由人工降雨模拟实验的统计数据,用、、三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,求出大雨、中雨、小雨的概率分布表,再利用相互独立事件概率计算公式求出三地都为中雨的概率;(2)的可能取值为,,,,分别求出取这几个值时的概率,再求出分布列和数学期望.
试题解析:(1)由人工降雨模拟实验的统计数据,用、、三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,得到大雨、中雨、小雨的概率如下表:
方式 | 实施地点 | 大雨 | 中雨 | 小雨 |
甲 | ||||
乙 | ||||
丙 |
记“甲、乙、丙三地都恰为中雨”为事件,则
.
(2)设甲、乙、丙三地达到理想状态的概率分别为、、,
则,,,
的可能取值为0,1,2,3,
;
;
;
.
所以随机变量的分布列为:
0 | 1 | 2 | 3 | |
数学期望.
科目:高中数学 来源: 题型:
【题目】已知,
其中,若函数,且它的最小正周期为.
(普通中学只做1,2问)
(1)求的值,并求出函数的单调递增区间;
(2)当(其中)时,记函数的最大值与最小值分
别为与,设,求函数的解
析式;
(3)在第(2)问的前提下,已知函数, ,若对于任意, ,总存在,使得
成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,圆的方程为.
(Ⅰ)写出直线的普通方程和圆的直角坐标方程;
(Ⅱ)若点的直角坐标为,圆与直线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体ABCD—A1B1C1D1中,
M、N分别是AB1、BC1的中点.
(Ⅰ)求证:直线MN//平面ABCD.
(Ⅱ)求B1到平面A1BC1的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.
(1)求证:AP∥平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com