精英家教网 > 高中数学 > 题目详情

【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表:

方式

实施地点

大雨

中雨

小雨

模拟实验总次数

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:

(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;

(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量,求随机变量的分布列和数学期望

【答案】1;(2)分布列见解析,数学期望.

【解析】试题分析:(1)由人工降雨模拟实验的统计数据,用三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,求出大雨、中雨、小雨的概率分布表,再利用相互独立事件概率计算公式求出三地都为中雨的概率;(2的可能取值为,,,,分别求出取这几个值时的概率,再求出分布列和数学期望.

试题解析:(1)由人工降雨模拟实验的统计数据,用三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,得到大雨、中雨、小雨的概率如下表:

方式

实施地点

大雨

中雨

小雨
















甲、乙、丙三地都恰为中雨为事件,则

2)设甲、乙、丙三地达到理想状态的概率分别为

的可能取值为0,1,2,3

所以随机变量的分布列为:


0

1

2

3






数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

其中,若函数,且它的最小正周期为

(普通中学只做1,2问)

(1)求的值,并求出函数的单调递增区间;

(2)当(其中)时,记函数的最大值与最小值分

别为,设,求函数的解

析式;

(3)在第(2)问的前提下,已知函数 ,若对于任意 ,总存在,使得

成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[5060

[6070

[7080

[8090

[90100]

1)求图中a的值;

2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

3)现用分层抽样的方法从第345组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】条件;条件:直线与圆相切,则的( )

A. 充分必要条件 B. 必要不充分条件

C. 充分不必要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数.以原点为极点,轴正半轴为极轴建立极坐标系,圆的方程为.

写出直线的普通方程和圆的直角坐标方程;

若点的直角坐标为,圆与直线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.

(Ⅰ求底面积,并用含x的表达式表示池壁面积;

(Ⅱ怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体ABCD—A1B1C1D1中,

MN分别是AB1BC1的中点.

(Ⅰ)求证:直线MN//平面ABCD.

(Ⅱ)求B1到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

同步练习册答案