精英家教网 > 高中数学 > 题目详情
13.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为$\left\{\begin{array}{l}x=-1+tcosα\\ y=tsinα\end{array}\right.$(t为参数,α为直线的倾斜角).
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C有唯一的公共点,求角α的大小.

分析 (Ⅰ)通过当$α=\frac{π}{2}$时,当$α≠\frac{π}{2}$时,分别求出直线l的普通方程.由ρ=2cosθ,得ρ2=2ρcosθ,然后求解曲线C的直角坐标方程.
(Ⅱ)把x=-1+tcosα,y=tsinα代入x2+y2=2x,利用△=0,求解直线l倾斜角α.

解答 解:(Ⅰ)当$α=\frac{π}{2}$时,直线l的普通方程为x=-1;
当$α≠\frac{π}{2}$时,直线l的普通方程为y=(tanα)(x+1).…(2分)
由ρ=2cosθ,得ρ2=2ρcosθ,
所以x2+y2=2x,即为曲线C的直角坐标方程.…(4分)
(Ⅱ)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.当α=$\frac{π}{2}$时,方程化为:t2+3=0,方程不成立,当$α≠\frac{π}{2}$时,由△=16cos2α-12=0,得${cos^2}α\;=\;\frac{3}{4}$,所以$cosα\;=\;\frac{{\sqrt{3}}}{2}$或$cosα\;=\;-\frac{{\sqrt{3}}}{2}$,
故直线l倾斜角α为$\frac{π}{6}$或$\frac{5π}{6}$.…(10分)

点评 本题考查参数方程与极坐标方程的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知tna2α=-$\frac{4}{3}$,α是第一象限角,则tanα等于(  )
A.1B.3C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}满足a1=2,an+1=2an-n+1,n∈N*
(1)求数列{an}的通项公式;
(2)若数列bn=$\frac{1}{n({a}_{n}-{2}^{n-1}+2)}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{3}$sinωx-2sin2$\frac{ωx}{2}$+m(ω>0)的最小正周期为3π,且当x∈[$\frac{π}{4}$,π]时,函数f(x)的最大值为1.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.平面直角坐标系xOy中,已知向量$\overrightarrow{OA}$与$\overrightarrow{OB}$关于y轴对称,向量$\overrightarrow{a}$=(1,0),则满足$\overrightarrow{O{A}^{2}}$+$\overrightarrow{a}$$•\overrightarrow{AB}$=0的点A(x,y)的轨迹方程为(  )
A.(x+1)2+y2=1B.(x-1)2+y2=1C.x2+y2=1D.x2+(y-1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱锥A-BCD中,CD⊥BD,AB=AD,E为BC的中点.
(Ⅰ)求证:AE⊥BD;
(Ⅱ)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若程序框图如图所示,则该程序运行后输出k的值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{3π}{4}$,且$|{\overrightarrow a}|=\sqrt{2}$,$|{\overrightarrow b}|=2$,则$\overrightarrow a•({\overrightarrow a-2\overrightarrow b})$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“α=$\frac{π}{4}$”是“tanα=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案