精英家教网 > 高中数学 > 题目详情
18.已知p=a+$\frac{1}{a-2}$,q=($\frac{1}{2}$)${\;}^{{x}^{2}-2}$,其中a>2,x∈R,则p,q的大小关系是(  )
A.p>qB.p≥qC.p<qD.¬p≤q

分析 由题意可知:根据基本不等式的性质,即可求得p≥4,由二次函数的性质x2-2≥-2,根据函数的单调性即可求得q≤4,则p≥q.

解答 解:由a>2,则a-2>0,则p=a-2+$\frac{1}{a-2}$+2≥2$\sqrt{(a-2)×\frac{1}{a-2}}$+2=2+2=4
由x∈R,则x2-2≥-2,设t=x2-2,t≥2,则q=($\frac{1}{2}$)t,单调递减,
则当t=-2时,q取最小值,最大值为4,
则p≥4,q≤4,
∴p≥q,
故选B.

点评 本题考查基本不等式的应用,指数函数的单调性,二次函数的性质及最值,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.
(1)求a的值;
(2)求函数f(x)的单调区间;
(3)若关于x的方程f(x)=-$\frac{5}{2}$x+b在区间(0,2)有两个不等实根,求实数b的取值范围;
(4)对于n∈N*,证明:$\frac{2}{1^2}+\frac{3}{2^2}+\frac{4}{3^2}+…+\frac{n+1}{n^2}>ln(n+1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为a,b,c(a>b>c且a,b,c∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是(  )
A.B.C.D.乙和丙都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足(1+2i)2z=1+z,则其共轭复数$\overline{z}$为(  )
A.$\frac{1}{8}$+$\frac{1}{8}$iB.-$\frac{1}{8}$-$\frac{1}{8}$iC.-$\frac{1}{8}$+$\frac{1}{8}$iD.$\frac{1}{8}$-$\frac{1}{8}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>$\frac{1}{2}$时,f(x+$\frac{1}{2}$)=f(x-$\frac{1}{2}$).则f (8)=(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.因为指数函数y=ax是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数关于上面推理正确的说法是(  )
A.推理的形式错误B.大前提是错误的C.小前提是错误的D.结论是正确的

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a,b∈R,若a>b,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.lga>lgbC.2a>2bD.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知sinx+cosx=$\frac{1}{2}$(0<x<π),求cosx,tanx
(2)已知cos($\frac{5π}{12}$+α)=$\frac{1}{3}$,-π<α<-$\frac{π}{2}$,求cos($\frac{π}{12}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,点F1到双曲线渐近线的距离为$\frac{\sqrt{2}}{2}$|OF1|(O为坐标原点),则该双曲线的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案