分析 (1)求出函数的导数,计算F(1),F′(1),代入切线方程即可;
(2)设H(x)=F(x)-f(x),求出函数的导数,得到函数H(x)的单调区间,求出其最小值,从而证出结论.
解答 解:(1)∵F(x)=2ex-1+x+lnx=2e-1ex+x+lnx,
∴F′(x)=2e-1ex+1+$\frac{1}{x}$,F(1)=3,F′(1)=4,
∴y=F(x)在点(1,F(1))处的切线方程为y-3=4(x-1),
即4x-y-1=0.
(2)证明:设H(x)=F(x)-f(x),
则$H'(x)=2{e^{x-1}}+1+\frac{1}{x}-a$,
设$h(x)=2{e^{x-1}}+1+\frac{1}{x}-a$,
则$h'(x)=2{e^{x-1}}-\frac{1}{x^2}$.
∵x≥1,∴$2{e^{x-1}}≥2,-\frac{1}{x^2}≥-1,h'(x)≥1$,
∴h(x)在[1,+∞)内单调递增,
∴当x≥1时,h(x)≥h(1),
即H'(x)≥4-a,
∵a≤4时,∴H'(x)≥4-a≥0,
∴当a≤4时,H(x)在[1,+∞)内单调递增,
∴当a≤4,x≥1时,H(x)≥H(1),
即F(x)≥f(x).
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及切线方程问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 数学成绩 | 114 | 106 | 115 | 77 | 86 | 90 | 95 | 86 | 97 | 79 | 100 | 78 | 77 | 113 | 60 |
| 物理成绩 | 72 | 49 | 51 | 29 | 57 | 49 | 62 | 22 | 63 | 29 | 42 | 21 | 37 | 46 | 21 |
| 学号 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 数学成绩 | 89 | 74 | 82 | 95 | 64 | 87 | 56 | 65 | 43 | 64 | 64 | 85 | 66 | 56 | 51 |
| 物理成绩 | 65 | 45 | 33 | 28 | 29 | 28 | 39 | 34 | 45 | 35 | 35 | 34 | 20 | 29 | 39 |
| 物理Ⅰ | 物理Ⅱ | 合计 | |
| 数学Ⅰ | 4 | ||
| 数学Ⅱ | 15 | ||
| 合计 | 30 |
| P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com