精英家教网 > 高中数学 > 题目详情
12.设f(x)=ax3+bx+1,且f(2)=0,求f(-2)的值.

分析 根据函数奇偶性的性质进行求解即可.

解答 解:∵f(x)=ax3+bx+1,且f(2)=0
∴f(x)-1=ax3+bx是奇函数,
则f(-x)-1=-(f(x)-1)=-f(x)+1,
即f(-x)=2-f(x),
则f(-2)=2-f(2)=2-0=2.

点评 本题主要考查函数值的计算,根据条件结合函数奇偶性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.解关于x的不等式$\frac{{x}^{2}-x+3}{{x}^{2}+ax}$>0(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列不等式的解集
(1)|x+1|-|2x-6|>3
(2)x+$\frac{2}{x+1}$>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合U={x|-3≤x≤3},集合M={x|1<x<2},则CUM={x|-3≤x≤1或2≤x≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\left\{\begin{array}{l}{2x-1,x≥0}\\{x+1,x<0}\end{array}\right.$,则不等式f(x)≤0解集是{x|x≤-1,或0≤x≤$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在矩形ABCD,AB=2,AD=1,边DC上(包含点D、C)的动点P与CB延长线上(包含点B)的动点Q满足|$\overline{DP}$|=|$\overline{BQ}$|,则向量$\overline{PA}$与向量$\overline{PQ}$的数量积$\overline{PA}$•$\overline{PQ}$的最小值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$
(1)求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$)的值;
(2)求证:f(x)+f($\frac{1}{x}$)是定值;
(3)求f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+…+f(2012)+f($\frac{1}{2012}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,已知A(cosx,sinx),(0≤x≤2π),B(1,1),顶点C满足$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,设f(x)=|$\overrightarrow{OC}$|2
(1)求f(x)的对称轴,对称中心;
(2)若f(C)=3+$\sqrt{6}$,求cosC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求证:
(1)(sin2α-cos2α)2=1-sin4α
(2)tan$\frac{θ}{2}$-$\frac{1}{tan\frac{θ}{2}}$=-$\frac{2}{tanθ}$
(3)tan($\frac{x}{2}$+$\frac{π}{4}$)+tan($\frac{x}{2}$-$\frac{π}{4}$)=2tanx
(4)$\frac{1+sin2φ}{cosφ+sinφ}$=cosφ+sinφ
(5)$\frac{1-2sinαcosα}{co{s}^{2}α-si{n}^{2}α}$=$\frac{1-tanα}{1+tanα}$
(6)1+cos2θ+2sin2θ=2
(7)$\frac{1-cos2θ}{1+cos2θ}$=tan2θ
(8)$\frac{1+sin2θ-cos2θ}{1+sin2θ+cos2θ}$=tanθ

查看答案和解析>>

同步练习册答案