分析 (Ⅰ)根据余弦定理直接求解角C的大小.
(Ⅱ)根据三角形内角和定理消去B,转化为三角函数的问题求解最大值即可.
解答 解:(Ⅰ)c2=a2+b2-ab.即ab=a2+b2-c2
由余弦定理:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{ab}{2ab}=\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{π}{3}$.
(Ⅱ)∵A+B+C=π,C=$\frac{π}{3}$.
∴B=$\frac{2π}{3}-A$,且A∈(0,$\frac{2π}{3}$).
那么:cosA+cosB=cosA+cos($\frac{2π}{3}-A$)=sin($\frac{π}{6}+A$),
∵A∈(0,$\frac{2π}{3}$).
∴$\frac{π}{6}≤$$\frac{π}{6}+A$$≤\frac{5π}{6}$,
故得当$\frac{π}{6}+A$=$\frac{π}{2}$时,cosA+cosB取得最大值为1.
点评 本题主要考查了余弦定理的运用和三角函数的有界限求解最值问题.属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com