精英家教网 > 高中数学 > 题目详情
11.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为x2=16y.

分析 由题意可得双曲线的渐近线方程和离心率,可得b=$\sqrt{3}$a,c=2a,由点到直线的距离公式可得p的方程,代入化简可得p值,进而可得方程.

解答 解:由题意可得双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线为y=±$\frac{b}{a}$x,
化为一般式可得bx±ay=0,离心率e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}$=2,
解得b=$\sqrt{3}$a,∴c=$\sqrt{{a}^{2}+{b}^{2}}$=2a,
又抛物线C2:x2=2py(p>0)故焦点到bx±ay=0的距离d=$\frac{\frac{ap}{2}}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ap}{2c}$=2,
∴p=$\frac{4c}{a}$=8,
∴抛物线C2的方程为:x2=16y
故答案为:x2=16y

点评 本题考查双曲线与抛物线的简单性质,涉及离心率的应用和点到直线的距离公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…).
(1)求数列{an}的通项公式;
(2)若数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$前n项和为Tn,问满足${T_n}>\frac{100}{209}$的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若经过抛物线y2=4x焦点的直线l与圆(x-4)2+y2=4相切,则直线l的斜率为±$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sinωx-$\sqrt{3}$cosωx(ω>0)在(0,π)上有且只有两个零点,则实数ω的取值范围为(  )
A.$({0,\frac{4}{3}}]$B.$({\frac{4}{3},\frac{7}{3}}]$C.$({\frac{7}{3},\frac{10}{3}}]$D.$({\frac{10}{3},\frac{13}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=2,an=2an-1-1,n≥2,n∈N*
(1)求证:数列{an-1}为等比数列;
(2)记Sn=a1+a2+…+an,求满足Sn<1000最大的正整数n;
(3)若数列{cn}满足:cn=(n+1)(an-1),求数列{cn}前n项和Mn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设θ∈R,“sinθ=cosθ“是“cos2θ=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2-ab.
(Ⅰ)求角C的大小;
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知2sin2A+sin(A-B)=sinC,且$A≠\frac{π}{2}$.
(Ⅰ)求$\frac{a}{b}$的值;
(Ⅱ)若c=2,$C=\frac{π}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}{b}$=$\frac{1}{c}$.
(1)证明:a,c,b成等比数列;
(2)若△ABC的外接圆半径为$\sqrt{3}$,且4sin(C-$\frac{π}{6}$)cosC=1,求△ABC的周长.

查看答案和解析>>

同步练习册答案