精英家教网 > 高中数学 > 题目详情
1.设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…).
(1)求数列{an}的通项公式;
(2)若数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$前n项和为Tn,问满足${T_n}>\frac{100}{209}$的最小正整数n是多少?

分析 (1)利用已知条件转化为数列是等差数列,然后求解通项公式.
(2)化简数列的通项公式,利用裂项消项法求解即可.

解答 解:(1)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),
得an-an-1=2(n=2,3,4,…).
∴数列{an}是以a1=1为首项,2为公差的等差数列.故an=2n-1.-------(6分)
(2)${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_{n-1}}{a_n}}}$=$\frac{1}{1×3}+\frac{1}{3×5}+\frac{1}{5×7}+…+\frac{1}{{({2n-1})({2n+1})}}$=$\frac{1}{2}[(\frac{1}{1}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{2}({1-\frac{1}{2n+1}})$=$\frac{n}{2n+1}$-------(10分)
由${T_n}=\frac{n}{2n+1}>\frac{100}{209}$,得$n>\frac{100}{9}$,
满足${T_n}>\frac{100}{209}$的最小正整数为12.-------(12分)

点评 本题考查数列的递推关系式的应用,数列求和,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若$\overrightarrow{a}$=(cos20°,sin20°),$\overrightarrow{b}$=(cos10°,sin190°),则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.cos10°D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某年级480名学生在一次面米测试中,成绩全部介于13秒和18秒之间,将测试结果分成5组,如图为其频率分布直方图,如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是216.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若loga(3a-1)>0,则a的取值范围是(  )
A.a<$\frac{1}{3}$B.$\frac{1}{3}$<a<$\frac{2}{3}$C.a>1D.$\frac{1}{3}$<a<$\frac{2}{3}$或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题中
①A+B=$\frac{π}{2}$是sinA=cosB成立的充分不必要条件.
②${(\frac{1}{{\sqrt{x}}}-x)^6}$的展开式中的常数项是第4项.
③在数列{an}中,a1=2,Sn是其前n项和且满足Sn+1=$\frac{1}{2}{S_n}$+2,则数列{an}为等比数列.
④设过函数f(x)=x2-x(-1≤x≤1)图象上任意一点的切线的斜率为K,则K的取值范围是(-3,1)
把你认为正确的命题的序号填在横线上①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-ax.其中a为非零常数.
(1)求a=1时,f(x)的单调区间;
(2)设b∈R,若f(x)≤b-a对x>0恒成立,求$\frac{b}{a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于$\frac{{\sqrt{2}}}{2}$,则这组数据为1,2,2,3. (从小到大排列)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0),以椭圆C的短轴为直径的圆O经过椭圆C左右两个焦点,A,B是椭圆C的长轴端点.
(1)求圆O的方程和椭圆C的离心率e;
(2)设P,Q分别是椭圆C和圆O上的动点(P,Q位于y轴两侧),且直线PQ与x轴平行,直线AP,BP分别与y轴交于点M,N,试判断MQ与NQ所在的直线是否互相垂直,若是,请证明你的结论;若不是,也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为x2=16y.

查看答案和解析>>

同步练习册答案