分析 (1)根据递推关系可得数列{an-1}是以为1首项,2为公比的等比数列,
(2)由Sn=a1+a2+…+an,根据等比数列的求和公式可得Sn=2n+n-1,即可得到2n+n-1<1000,求出n=9,
(3)cn=(n+1)(an-1)=(n+1)2n-1,结合数列的项的特点考虑利用错位相减求和
解答 (1)证明:∵an=2an-1-1,
∴an-1=2(an-1-1),
∵a1=2,
∴a1-1=1,
∴数列{an-1}是以为1首项,2为公比的等比数列;
(2)由(1)可得an-1=2n-1,
∴an=2n-1+1
∴Sn=a1+a2+…+an=n+1+21+22+…+2n-1=n+$\frac{1-{2}^{n}}{1-2}$=2n+n-1,
∵Sn<1000,
∴2n+n-1<1000,
∵210+10-1=1033,29+10-1=521,
∴Sn<1000最大的正整数n=9,
(3)cn=(n+1)(an-1)=(n+1)2n-1,
∴Mn=2×20+3×21+4×22+…+(n+1)2n-1,
∴2Mn=2×21+3×22+4×23+…+n•2n-1+(n+1)•2n,
∴-Mn=2+21+22+23+…+2n-1-(n+1)•2n=2+$\frac{2(1-{2}^{n-1})}{1-2}$-(n+1)•2n=-n•2n,
∴Mn=n•2n.
点评 本题主要考查了利用数列的递推公式,通项公式的应用及错位相减求和方法的应用,具有一定的综合性
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿”此推理属于演绎推理. | |
| B. | “在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c则a∥c,将此结论放到空间中也成立”此推理属于合情推理. | |
| C. | “a≤0”是“函数f(x)=ax+lnx存在极值”的必要不充分条件. | |
| D. | 若$x∈(0\;,\;\;\frac{π}{2}]$,则$sinx+\frac{2}{sinx}$的最小值为$2\sqrt{2}$. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com