精英家教网 > 高中数学 > 题目详情
10.设Sn是数列{an}的前n项和,n≥2时点(an-1,2an)在直线y=2x+1上,且{an}的首项a1是二次函数y=x2-2x+3的最小值,则S9=36.

分析 由题意可得${a_n}-{a_{n-1}}=\frac{1}{2}$(n≥2),再由配方法求出二次函数y=x2-2x+3的最小值得a1,代入等差数列的前n项和得答案.

解答 解:∵(an-1,2an)在直线y=2x+1上,
∴2an=2an-1+1,即${a_n}-{a_{n-1}}=\frac{1}{2}$(n≥2),
又y=x2-2x+3=(x-1)2+2,∴a1=2,
则S9=$9×2+\frac{9×8}{2}×\frac{1}{2}=36$.
故答案为:36.

点评 本题考查等差数列的通项公式,考查等差数列的前n项和,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=2,an=2an-1-1,n≥2,n∈N*
(1)求证:数列{an-1}为等比数列;
(2)记Sn=a1+a2+…+an,求满足Sn<1000最大的正整数n;
(3)若数列{cn}满足:cn=(n+1)(an-1),求数列{cn}前n项和Mn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点F(1,0),圆E:(x+1)2+y2=8,点P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹Γ的方程;
(2)若直线l与圆O:x2+y2=1相切,并与(1)中轨迹Γ交于不同的两点A、B.当$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,且满足$\frac{2}{3}$≤λ$≤\frac{3}{4}$时,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{3}{5}$,且短轴长为8
(1)求椭圆C的标准方程;
(2)设F1、F2分别为椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同两点M,N,若△F1MN的内切圆周长为π,M(x1,y1)、N(x2,y2),求|y1-y2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,梯形ABCD的对角线交于点O,则下列四个结论:
①△AOB∽△COD;
②△AOD∽△ACB;
③S△DOC:S△AOD=CD:AB;
④S△AOD=S△BOC
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}{b}$=$\frac{1}{c}$.
(1)证明:a,c,b成等比数列;
(2)若△ABC的外接圆半径为$\sqrt{3}$,且4sin(C-$\frac{π}{6}$)cosC=1,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC的顶点A(0,-4)、B(0,4),且4(sinB-sinA)=3sinC,则顶点C的轨迹方程是(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1(x>3)B.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1(x<-7)C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{7}$=1(y>3)D.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{7}$=1(y<-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ x-y≤0\\ x+y≤a\end{array}\right.({a>0})$,若z=x+ay的最大值为2,则$m+\frac{a^2}{{m-\sqrt{2}}}({m>\sqrt{2}})$的最小值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知全集为R,集合A={y|y=3x,x≤1},B={x|x2-6x+8≤0},则A∪B=(0,4],A∩∁RB=(0,2).

查看答案和解析>>

同步练习册答案