精英家教网 > 高中数学 > 题目详情
8.甲乙两个口袋分别装有四张扑克牌,甲口袋内的四张牌分别为红桃A,方片A,黑桃Q与梅花K,乙口袋内的四张牌分别为黑桃A,方片Q,梅花Q与黑桃K,从两个口袋分别任取两张牌.
(Ⅰ)求恰好抽到两张A的概率.
(Ⅱ)记四张牌中含有黑桃的张数为x,求x的分布列与期望.

分析 (Ⅰ)基本事件总数n=${C}_{4}^{2}{C}_{4}^{2}$=36,恰好抽到两张A包含的基本事件个数m=${C}_{2}^{2}{C}_{3}^{2}+{C}_{2}^{1}{C}_{2}^{1}•{C}_{1}^{1}{C}_{3}^{1}$=15,由此能求出恰好抽到两张A的概率.
(Ⅱ)由题意X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X).

解答 解:(Ⅰ)甲乙两个口袋分别装有四张扑克牌,
甲口袋内的四张牌分别为红桃A,方片A,黑桃Q与梅花K,
乙口袋内的四张牌分别为黑桃A,方片Q,梅花Q与黑桃K,
从两个口袋分别任取两张牌.
基本事件总数n=${C}_{4}^{2}{C}_{4}^{2}$=36,
恰好抽到两张A包含的基本事件个数m=${C}_{2}^{2}{C}_{3}^{2}+{C}_{2}^{1}{C}_{2}^{1}•{C}_{1}^{1}{C}_{3}^{1}$=15,
∴恰好抽到两张A的概率p=$\frac{m}{n}=\frac{15}{36}$=$\frac{5}{12}$.
(Ⅱ)由题意X的可能取值为0,1,2,3,
P(X=0)=$\frac{{C}_{3}^{2}{C}_{2}^{2}}{{C}_{4}^{2}{C}_{4}^{2}}$=$\frac{3}{36}$=$\frac{1}{12}$,
P(X=1)=$\frac{{C}_{3}^{1}{C}_{1}^{1}{C}_{2}^{2}+{C}_{3}^{2}{C}_{2}^{1}{C}_{2}^{1}}{{C}_{4}^{2}{C}_{4}^{2}}$=$\frac{15}{36}$=$\frac{5}{12}$,
P(X=2)=$\frac{{C}_{1}^{1}{C}_{3}^{1}{C}_{2}^{1}{C}_{2}^{1}+{C}_{3}^{2}{C}_{2}^{2}}{{C}_{4}^{2}{C}_{4}^{2}}$=$\frac{15}{36}$=$\frac{5}{12}$,
P(X=3)=$\frac{{C}_{3}^{1}{C}_{1}^{1}{C}_{2}^{2}}{{C}_{4}^{2}{C}_{4}^{2}}$=$\frac{3}{36}$=$\frac{1}{12}$,
∴X的分布列为:

 X 0 2 3
 P $\frac{1}{12}$ $\frac{5}{12}$ $\frac{5}{12}$ $\frac{1}{12}$
E(X)=$0×\frac{1}{12}+1×\frac{5}{12}+2×\frac{5}{12}+3×\frac{1}{12}$=$\frac{3}{2}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列学期望的求法,考查推理论证能力、运算求解能力,考查转化化归思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知正项数列n的前n项和为Sn,且a1=1,an+12=Sn+1+Sn
(1)求数列{an}的通项公式;
(2)设${b_n}={a_{2n-1}}•{2^{a_n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sinωx-$\sqrt{3}$cosωx(ω>0)在(0,π)上有且只有两个零点,则实数ω的取值范围为(  )
A.$({0,\frac{4}{3}}]$B.$({\frac{4}{3},\frac{7}{3}}]$C.$({\frac{7}{3},\frac{10}{3}}]$D.$({\frac{10}{3},\frac{13}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设θ∈R,“sinθ=cosθ“是“cos2θ=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2-ab.
(Ⅰ)求角C的大小;
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}的前n项和为Sn,且S6=24,S9=63,则a4=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知2sin2A+sin(A-B)=sinC,且$A≠\frac{π}{2}$.
(Ⅰ)求$\frac{a}{b}$的值;
(Ⅱ)若c=2,$C=\frac{π}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)的定义域为R,f(x)=$\left\{\begin{array}{l}{-x,-1≤x≤0}\\{{3}^{x}-1,0<x<1}\end{array}\right.$,且对任意的x∈R都有f(x+1)=-$\frac{1}{f(x)}$,若在区间[-5,1]上函数g(x)=f(x)-mx+m恰有5个不同零点,则实数m的取值范围是(  )
A.[-$\frac{1}{4}$,-$\frac{1}{6}$)B.(-$\frac{1}{2}$,-$\frac{1}{4}$]C.(-$\frac{1}{6}$,0]D.(-$\frac{1}{2}$,-$\frac{1}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow m=({a,2}),\overrightarrow n=({1,1-a})$,且$\overrightarrow m⊥\overrightarrow n$,则实数a的值为(  )
A.0B.2C.-2或1D.-2

查看答案和解析>>

同步练习册答案