精英家教网 > 高中数学 > 题目详情
已知圆的方程,过作直线与圆交于点,且关于直线对称,则直线的斜率等于
A.B.C.D.
A
方法一:(特殊值法)A,B都不是唯一确定的
不妨令点A为(5,0)     则MA斜率 
因为直线MA、MB关于直线y=3对称   故两直线斜率互为相反数
故MB斜率为       MB方程为     代入圆的方程
x²+()²=25     化简得:5x²  +13x  -28=0   解得x=-4(舍) 或x= 
把x=代入MB方程得y=   即x=1.4   y=4.8       所以 A(5,0)    B(1.4,4.8)
所以直线AB斜率为、       k="(4.8" -0)/(1.4-5)=  
解法二:
设A(x1,y1),B(x2,y2)
因为直线MA、MB关于直线y=3对称,故两直线斜率互为相反数
设直线MA方程的斜率为k,则,直线MB斜率为-k
所以,直线MA 方程为:y-3=k(x+4)
 整理得: 
所以: ,即:

所以 ,同理
所以 
故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设直线(其中为整数)与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
已知椭圆的焦点是,,点在椭圆上且满足.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线与椭圆的交点为.
(i)求使 的面积为的点的个数;
(ii)设为椭圆上任一点,为坐标原点,,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知向量),,动点的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当时,已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程表示双曲线,则的取值范围是       (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则直线和曲线的大致图形可以是                                                       (     )
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆中心在原点,一个焦点为(,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下五个关于圆锥曲线的命题中:
①双曲线与椭圆有相同的焦点;
②方程的两根可分别作为椭圆和双曲线的离心率;
③设A、B为两个定点,为常数,若,则动点P的轨迹为双曲线;
④过抛物线的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和
等于5的直线有且只有两条。
⑤过定圆C上一点A作圆的动弦AB,O为原点,若,则动点P的
轨迹为椭圆
其中真命题的序号为                (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P是椭圆上一点,M,N分别是两圆:上的点,则|PM|+|PN|的最小值、最大值分别为             (   )
A.4,8B.2,6C.6,8D.8,12

查看答案和解析>>

同步练习册答案