精英家教网 > 高中数学 > 题目详情
1.已知实数x、y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,则目标函数z=2x-3y的最大值为3.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x+y-4=0}\\{2x-y-5=0}\end{array}\right.$,解得A(3,1),
化目标函数z=2x-3y为y=$\frac{2x}{3}-\frac{z}{3}$,
由图可知,当直线y=$\frac{2x}{3}-\frac{z}{3}$过A时,直线在y轴上的截距最小,z有最大值为2×3-3×1=3.
故答案为:3.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,一等奖500元,二等奖200元,三等奖10元.抽奖规则如下;顾客先从装有2个红球、4个白球的甲箱中随机摸出两球,再从装有1个红球、2个黑球的乙箱随机摸出一球,在摸出的3个球中,若都是红球,则获一等奖;若有2个红球,则获二等奖;若三种颜色各一个,则获三等奖,其它情况不获奖.
(I)设某顾客在一次抽奖中所得奖金数为X,求X的分布列和数学期望;
(Ⅱ)若某个时间段有三位顾客参加抽奖,求至多有一位获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在空间四边形ABCD中,$\overrightarrow{DA}=\overrightarrow a,\overrightarrow{DB}=\overrightarrow b,\overrightarrow{DC}=\overrightarrow c$,P在线段AD上,且DP=2PA,Q为BC的中点,则$\overrightarrow{PQ}$=(  )
A.$\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$D.$-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是$\frac{π}{2}$,若将y=f(x)的图象向右平移$\frac{π}{6}$个单位,所得函数g(x)为奇函数.
(1)求函数f(x)的解析式及单调增区间;
(2)设函数$y=3{[{g(x)}]^2}+mg(x)+2(x∈[{0,\frac{π}{2}}])$,求函数y的最小值φ(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的正视图和侧视图如图所示,该几何体体积的最大值是(  )
A.$\frac{1}{3}$B.$\frac{π}{6}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.给出方程组$\left\{\begin{array}{l}{x=1+tcosθ}\\{y=1+tsinθ}\end{array}\right.$当t为参数时动点(x,y)的轨迹方程为曲线C1,当θ为参数时动点(x,y)的轨迹曲线C2,且C1与C2的一个公共点为(1+$\sqrt{2}$,1+$\sqrt{2}$).
(1)求C1与C2的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C2的极坐标方程以及C1与C2交点的极坐标(ρ≥0,0≤θ≤2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A(-2,0),B(2,0),且△ABM的周长等于2$\sqrt{6}$+4.
(1)求动点M的轨迹G的方程;
(2)已知点C,D分别为东直线y=k(x-2)(k≠0)与轨迹G的两个交点,问在x轴上是否存在定点E,使$\overrightarrow{EC}$2+$\overrightarrow{EC}$•$\overrightarrow{CD}$为定值?若存在,求此定值并求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C过点P($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)求圆C的方程;
(2)设Q为圆心C上的一个动点,求$\overrightarrow{CQ}$•$\overrightarrow{MQ}$的最小值;
(3)过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$x2+mlnx(m∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线经过点(3,3),求m的值;
(2)设1<m≤e,H(x)=f(x)-(m+1)x,证明:?x1,x2∈[1,m],恒有H(x1)-H(x2)<1.

查看答案和解析>>

同步练习册答案