精英家教网 > 高中数学 > 题目详情
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
解:(Ⅰ)因为四边形是边长为的正方形,所以,又二面角
为直二面角,所以,所以
⊥平面,所以②,
由①②可得⊥平面             ………4分
(Ⅱ)由(Ⅰ)得,又,所以,记的中点分别为,则以为坐标原点,以的方向为轴正方向建系
………6分
则平面的法向量,平面的法向量………8分
所以,所以二面角的大小为  ………10分
(Ⅲ)因为
所以点到平面的距离             ………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于互不相同的直线和平面,给出下列三个命题:
①若为异面直线,,则
②若,则
③若,则.
其中真命题的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,为正方形中心,则与平面所成角的正切值为                             (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体中,分别为BC, CC1中点,
则异面直线所成角的大小为
                             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间,下列命题正确的是(   )
A.若三条直线两两相交,则这三条直线确定一个平面
B.若直线m与平面内的一条直线平行,则m//
C.若平面,则过内一点P与l垂直的直线垂直于平面
D.若直线a//b,且直线,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,为等边三角形,为矩形,平面平面分别为中点,
(Ⅰ)求证:
(Ⅱ)求多面体的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱的侧面是菱形,
(1)证明:平面
(2)设D是上的点且,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在四面体中,三组对棱棱长分别相等且依次为、15,则此四面体的外接球的体积为________

查看答案和解析>>

同步练习册答案