精英家教网 > 高中数学 > 题目详情
3.已知$\overrightarrow{OA}=(1,0),\overrightarrow{OC}=(-1,\sqrt{3})$,$\overrightarrow{CB}$=(cosα,sinα),则$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角的取值范围为(  )
A.$[\frac{π}{2},\frac{5π}{6}]$B.$[\frac{π}{2},\frac{2π}{3}]$C.$[\frac{2π}{3},\frac{5π}{6}]$D.$[\frac{π}{6},\frac{2π}{3}]$

分析 由题知点B在以C(-1,$\sqrt{3}$)为圆心,1为半径的圆上,所以本题应采用数形结合来解题,由图来分析其夹角的最大值点、最小值点,从而得出结论.

解答 解:设$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为θ,由题意可得$\overrightarrow{OB}$=$\overrightarrow{OC}$+$\overrightarrow{CB}$=(-1 $\sqrt{3}$)+(cosα,sinα)=(-1+cosα,$\sqrt{3}$+sinα),
令x=cosα-1,y=sinα+$\sqrt{3}$,则有 (x+1)2+${(y-\sqrt{3})}^{2}$=1,
故点B在以C(-1,$\sqrt{3}$)为圆心、半径等于1的圆上,如图:
直角三角形OCD中,sin∠COD=$\frac{OD}{OC}$=$\frac{1}{2}$,∴∠COD=$\frac{π}{6}$=∠COE.
故则$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角的夹角的最小值为∠AOD=$\frac{π}{2}$,最大值为∠AOE=$\frac{π}{2}$+$\frac{π}{6}$+$\frac{π}{6}$=$\frac{5π}{6}$,
即则$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角的取值范围是[$\frac{π}{2}$,$\frac{5π}{6}$],
故选:A.

点评 本题考查向量的坐标运算及向量的数量积与夹角,解题的关键是求出点B的轨迹,结合圆的性质进行求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.f(x)=$\frac{2}{(x+a)(2x-4)}$为偶函数,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\sqrt{2sin2x-1}$的定义域是[$\frac{π}{12}+kπ,\frac{5π}{12}+kπ$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式$|\begin{array}{l}{a}&{1}\\{1}&{\frac{x}{x-1}}\end{array}|$<0的解集为{x|x<1或x>2},那么a的值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}的前n项和Sn,若a3+a7-a10=8,a11-a4=4,则S13等于156.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,且Sn=n2+2n,(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设集合P={x|x=2an,n∈N*},Q={x|x=2n+2∈N*},等差数列{cn}的任一项cn∈P∩Q,其中c1是P∩Q中的最小数,110<c10<115,求数列{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设正三角形ABC的边长为a,现有一向量$\overrightarrow{x}$与向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CA}$的夹角分别为50°,170°,70°,则向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CA}$在向量$\overrightarrow{x}$上的射影的和为0.类比到n边形A1A2…An,$\overrightarrow{{A}_{1}{A}_{2}}$,$\overrightarrow{{A}_{2}{A}_{3}}$,$…\overrightarrow{{A}_{n}{A}_{1}}$,与$\overrightarrow{x}$的夹角分别为θ1,θ2,…,θn,则向量$\overrightarrow{{A}_{1}{A}_{2}}$,$\overrightarrow{{A}_{2}{A}_{3}}$,$…\overrightarrow{{A}_{n}{A}_{1}}$在向量$\overrightarrow{x}$上的射影的和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.使等式$\sqrt{(a-3)({a}^{2}-9)}$=(3-a)$\sqrt{a+3}$成立的实数a的取值范围是[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x+$\frac{1}{x}$.
(1)求f(x)的定义域;
(2)判断函数f(x)在区间[2,+∞)上的增减性,并用定义证明;
(3)求函数f(x)在[2,+∞)上的最小值和最大值.

查看答案和解析>>

同步练习册答案