精英家教网 > 高中数学 > 题目详情
7.下列的判断错误的是(  )
A.20.6>20.3B.log23>1
C.logax•logay=logaxyD.函数$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$是奇函数

分析 A.利用函数y=2x的单调性即可判断出正误;
B.利用函数y=log2x的单调性即可判断出正误;
C.利用对数函数的单调性即可判断出正误;
D.计算f(-x)与-f(x)的关系即可判断出正误.

解答 解:∵A.20.6>20.3,正确;
B.log23>log22=1,正确;
C.∵loga(xy)=logax+logay≠=logax•logay,∴不正确;
D.∵f(-x)=$\frac{{2}^{-x}+1}{{2}^{-x}-1}$=$\frac{1+{2}^{x}}{1-{2}^{x}}$=-f(x),x≠0,∴函数f(x)是奇函数.
综上可得:只有C错误.
故选:C.

点评 本题考查了指数函数与对数函数的单调性及其运算法则、函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在四棱柱ABCD-A1B1C1D1中,AC⊥B1D,BB1⊥底面ABCD,E、F、H分别为AD、CD、DD1的中点,EF与BD交于点G.
(1)证明:平面ACD1⊥平面BB1D;
(2)证明:GH∥平面ACD1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x2-3x+3)ex的定义域为[-2,t],设f(-2)=m,f(t)=n.
(Ⅰ)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(Ⅱ)求证:m<n;
(Ⅲ)若不等式$\frac{f(x)}{{e}^{x}}$+7x-2>k(xlnx-1)(k为正整数)对任意正实数恒成立,求的最大值,并证明lnx<$\frac{14}{9}$(解答过程可参考使用以下数据ln7≈1.95,ln8≈2.08)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=f(x)在x=x0处的导数为11,则
$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-11;
$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{2({x}_{0}-x)}$=-$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足:a1=2,a3+a5=-4.
(Ⅰ)若数列{an}是等差数列,求数列{an}的通项公式;
(Ⅱ)若a4=-1,且2an+1=an+an+2+k(n∈N*,k∈R),
①证明数列{an+1-an}是等差数列;
②?求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在△ABC中,点A(-1,0),B(0,$\sqrt{3}$),C(1,-2).
(Ⅰ)求边AB上高所在直线的方程;
(Ⅱ)求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题错误的是(  )
A.“若x≠a且x≠b,则x2-(a+b)x+ab≠0”的否命题是“若x=a或x=b,则x2-(a+b)x+ab=0”
B.若p∧q为假命题,则p,q均为假命题
C.命题“?x0∈(0,+∞)lnx0=x0-1”的否定是“?x∈(0,+∞),lnx≠x-1
D.“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2cos2ωx+2$\sqrt{3}$sinωxcosωx-1,且f(x)的周期为2.
(Ⅰ)当$x∈[{-\frac{1}{2},\frac{1}{2}}]$时,求f(x)的最值;
(Ⅱ)若$f(\frac{α}{2π})=\frac{1}{4}$,求$cos(\frac{2π}{3}-α)$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$f(x)=-2tanx+m,x∈[-\frac{π}{4},\frac{π}{3}]$有零点,则实数m的取值范围是$[-2\;,\;2\sqrt{3}]$.

查看答案和解析>>

同步练习册答案