精英家教网 > 高中数学 > 题目详情
若关于x的方程x2-λ|x-1|+1=0有4个相异实根,则实数λ的取值范围是
 
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:根据x的取值范围去绝对值后得到两个一元二次方程,分别让判别式大于0,解出即可.
解答: 解:当x≥1时,有x2-λ(x-1)+1=0,
整理得:x2-λx+λ+1=0,
∴△=λ2-4λ-4>0,
解得:λ>2+2
2
或λ<2-2
2

当x<1时,有x2+λ(x-1)+1=0,
整理得:x2+λx+1-λ=0,
∴△=λ2+4λ-4>0,
解得:λ>-2+2
2
或λ<-2-2
2

综合得:λ>2+2
2
或λ<-2-2
2

故答案为:(2+2
2
,+∞)∪(-∞,-2-2
2
).
点评:本题考察了函数的根的存在性,渗透了分类讨论思想,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的导数.
(1)y=2xsin(2x-5)
(2)f(x)=ln
x2+1

(3)y=
2x
x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知a1=
1
2
,an=
2-n
n
Sn,则
lim
n→∞
(S1+S2+…+Sn)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,
2
]上的余弦曲线y=cosx与坐标轴围成的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:在平面内,点M到定圆C的圆周上任意一点的距离的最小值称为点M到定圆C的“美好距离”,若定圆P的方程:x2+y2+2x-3=0,平面内的动点F到定点A的距离等于F到定圆P的美好距离,则动点F的轨迹可能为:①椭圆②圆③双曲线的一支④直线⑤抛物线,其中可能的序号是
 
(写出所有可能的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(-∞,0)∪(0,+∞)的奇函数,在区间(0,+∞)上单调递增,且f(-2)=0,若f(x)<0,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asinωx(A>0,ω>0)的最小正周期为2,且f(
1
6
)=1,则函数y=f(x)的图象向左平移
1
3
个单位后所得图象的函数解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y为实数,且满足:(x-2014)3+2013(x-2014)=-2013,(y-2014)3+2013(y-2014)=2013,则x+y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足3a8=5am,a1>0,(Snmax=S20,则m的值为(  )
A、6B、12C、13D、26

查看答案和解析>>

同步练习册答案