精英家教网 > 高中数学 > 题目详情
20.已知实数x,y满足:$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,z=|2x-2y-1|,则z的取值范围是[0,5].

分析 作出不等式组对应的平面区域,利用目标函数的几何意义转化为点到直线的距离之间的关系进行求解即可.

解答 解:z=|2x-2y-1|=$\sqrt{{2}^{2}+{2}^{2}}$•$\frac{|2x-2y-1|}{\sqrt{{2}^{2}+{2}^{2}}}$=2$\sqrt{2}$•$\frac{|2x-2y-1|}{\sqrt{{2}^{2}+{2}^{2}}}$=2$\sqrt{2}d$,
d=$\frac{|2x-2y-1|}{\sqrt{{2}^{2}+{2}^{2}}}$的几何意义为区域内的点到直线2x-2y-1=0的距离,
作出不等式组对应的平面区域如图,
∵直线2x-2y-1=0经过平面区域,
∴d的最小值为0,
点C到直线2x-2y-1=0的距离最大,
由$\left\{\begin{array}{l}{x=2}\\{x+y-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1),
此时d的最大值为d=$\frac{|2×2-2×(-1)-1|}{\sqrt{{2}^{2}+{2}^{2}}}$=$\frac{5}{\sqrt{8}}$=$\frac{5}{2\sqrt{2}}$,
则z的最大值为2$\sqrt{2}d$=2$\sqrt{2}$•$\frac{5}{2\sqrt{2}}$=5,
即z的取值范围是[0,5],
故答案为:[0,5].

点评 本题主要考查线性规划的应用,根据目标函数的几何意义转化为点到直线的距离之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某地政府为提升城市形象,在该地区边长为1的正方形ABCD的空地建文化广场,在正方形ABCD的内部规划一块△CPQ区域种植花草,并满足P,Q分别为边AB,DA上的动点,且∠PCQ=$\frac{π}{3}$,问∠PCB多大时才能使△CPQ面积的最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=$\frac{1-x}{1+x}$,记f1(x)=f(x),若fk+1(x)=f(fk(x)),k=1,2,…,则f2016(x)=x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于直线DE,则DE与AB的位置关系是(  )
A.异面B.平行C.相交D.以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.经过圆x2+y2+2y=0的圆心且与直线x+2y-2=0平行的直线方程是(  )
A.x+2y-1=0B.x+2y+2=0C.x+2y+1=0D.x+2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow m=({\sqrt{3}sinx,cosx}),\overrightarrow n=({cosx,cosx}),x∈R$,设$f(x)=\overrightarrow m•\overrightarrow n$.
(I)求函数f(x)的解析式及单调增区间;
(Ⅱ)在△ABC中,a,b,c分别为△ABC内角A,B,C的对边,且a=1,b+c=2,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,若2a5+3a7+2a9=14,则S13等于(  )
A.26B.28C.52D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线x+y=a与圆x2+y2=1交于A,B两点,O是原点,C是圆上一点,若$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,则a的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$cosα=-\frac{{\sqrt{5}}}{5}$,$α∈(π,\frac{3π}{2})$.
(Ⅰ)求sinα的值;
(Ⅱ)求$\frac{{sin(π+α)+2sin(\frac{3π}{2}+α)}}{cos(3π-α)+1}$的值.

查看答案和解析>>

同步练习册答案