精英家教网 > 高中数学 > 题目详情
17.正方体ABCD-A1B1C1D1的棱长为6,半径为$\sqrt{6}$的圆O1在平面A1B1C1D1内,其圆心O1为正方形A1B1C1D1的中心,P为圆O1上有一个动点,则多面体PABCD的外接球的表面积为(  )
A.88πB.80πC.$\frac{88\sqrt{22}}{3}$πD.$\frac{160\sqrt{5}}{3}$π

分析 设球心到底面的距离为x,则x2+(3$\sqrt{2}$)2=(6-x)2+6,求出x,即可求出多面体PABCD的外接球的半径,可得多面体PABCD的外接球的表面积.

解答 解:设球心到底面的距离为x,则x2+(3$\sqrt{2}$)2=(6-x)2+6
∴x=2,∴x2+(3$\sqrt{2}$)2=22,
∴多面体PABCD的外接球的半径为$\sqrt{22}$,
∴多面体PABCD的外接球的表面积为88π.
故选A.

点评 本题考查多面体PABCD的外接球的半径、表面积,考查学生的计算能力,正确建立方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设A={4,5,6,8},B={3,5,7,8},则A∪B=(  )
A.A∪B={5,8}B.A∪B={3,4,5,6,7,8}C.A∪B={4,6}D.A∪B={4,5,8}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点G(5,4),圆C1:(x-1)2+(y-4)2=25,过点G的动直线l与圆C1相交于E、F两点,线段EF的中点为C,且C在圆C2上.
(1)若直线mx+ny-1=0(mn>0)经过点G,求mn的最大值;
(2)求圆C2的方程;
(3)若过点A(1,0)的直线l1与圆C2相交于P,Q两点,线段PQ的中点为M,l1与l2:x+2y+2=0的交点为N,求证:|AM|•|AN|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.非零向量$\overrightarrow a$,$\overrightarrow b$,满足|$\overrightarrow a$-$\overrightarrow b$|=|$\overrightarrow a$+$\overrightarrow b$|=2|$\overrightarrow a$|,则向量$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$夹角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的大小为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.由直线y=x-4,曲线y=$\sqrt{2x}$以及x轴所围成的图形面积为(  )
A.$\frac{25}{2}$B.13C.$\frac{40}{3}$D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集{x|x<-$\frac{3}{a}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知锐角α,β满足cosα=$\frac{2\sqrt{5}}{5}$,sin(α-β)=-$\frac{3}{5}$,则sinβ的值为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{25}$D.$\frac{\sqrt{5}}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图([x]表示不超过x的最大整数),则输出S的值为(  )
A.4B.5C.7D.9

查看答案和解析>>

同步练习册答案