精英家教网 > 高中数学 > 题目详情
8.已知点G(5,4),圆C1:(x-1)2+(y-4)2=25,过点G的动直线l与圆C1相交于E、F两点,线段EF的中点为C,且C在圆C2上.
(1)若直线mx+ny-1=0(mn>0)经过点G,求mn的最大值;
(2)求圆C2的方程;
(3)若过点A(1,0)的直线l1与圆C2相交于P,Q两点,线段PQ的中点为M,l1与l2:x+2y+2=0的交点为N,求证:|AM|•|AN|为定值.

分析 (1)若直线mx+ny-1=0(mn>0)经过点G,则5m+4n=1,由基本不等式可得答案;
(2)利用$\overrightarrow{{C}_{1}C}$•$\overrightarrow{CG}$=0,即可求点C的轨迹C2的方程;
(3)分别联立相应方程,求得M,N的坐标,再求$\overrightarrow{AM}$•$\overrightarrow{AN}$

解答 解:(1)若直线mx+ny-1=0(mn>0)经过点G,
则5m+4n=1≥2$\sqrt{5m•4n}$=4$\sqrt{5}$•$\sqrt{mn}$,
故$\sqrt{mn}$≤$\frac{1}{4\sqrt{5}}$,
∴mn≤$\frac{1}{80}$,
即mn的最大值为$\frac{1}{80}$;
(2)圆C1:(x-1)2+(y-4)2=25,圆心C1(1,4),半径为5,
设C(x,y),则$\overrightarrow{{C}_{1}C}$=(x-1,y-4),$\overrightarrow{CG}$=(5-x,4-y),
∵$\overrightarrow{{C}_{1}C}$•$\overrightarrow{CG}$=0,
∴(x-1)(5-x)+(y-4)(4-y)=0,即:(x-3)2+(y-4)2=4,
∴点C的轨迹C2的方程为:(x-3)2+(y-4)2=4;
证明:(3)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx-y-k=0
与x+2y+2=0联立可得N($\frac{2k-2}{2k+1}$,-$\frac{3k}{2k+1}$),
又直线CM与l1垂直,$\left\{\begin{array}{l}y=kx-k\\ y-4=-\frac{1}{k}(x-3)\end{array}\right.$得M($\frac{{k}^{2}+4k+3}{1+{k}^{2}}$,$\frac{{4k}^{2}+2k}{1+{k}^{2}}$).
∴|AM|•|AN|=|$\overrightarrow{AM}$•$\overrightarrow{AN}$|=|$\frac{2|2k+1|}{1+{k}^{2}}$•$\sqrt{1+{k}^{2}}$•$\frac{3•\sqrt{1+{k}^{2}}}{|2k+1|}$|=6为定值.

点评 本题主要考查直线与圆的位置关系以及直线与直线的交点,考查向量知识的运用,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.
(1)求证:直线l过定点;
(2)判断该定点与圆的位置关系;
(3)当m为何值时,直线l被圆C截得的弦最长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设方程x2=2x的根的个数为a,方程sinx=lgx的根的个数为b,则a与b的大小关系是(  )
A.a>bB.a<bC.a=bD.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.两直线l1:mx-y+n=0和l2:nx-y+m=0在同一坐标系中,则正确的图形可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的实轴长为4,则其渐近线方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知二次函数f(3x+1)=9x2-6x+5,求f(x)的解析式;
(2)设f(x)是定义在实数集R上 的函数,满足f(0)=1,且对任意的实数x,y有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)是R上的偶函数,且在x≤0上是减函数,若f(2x)>f($\frac{1}{2}$),则实数x的取值范围是(  )
A.x<-1B.x>-1C.x≤-1D.x≥-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.正方体ABCD-A1B1C1D1的棱长为6,半径为$\sqrt{6}$的圆O1在平面A1B1C1D1内,其圆心O1为正方形A1B1C1D1的中心,P为圆O1上有一个动点,则多面体PABCD的外接球的表面积为(  )
A.88πB.80πC.$\frac{88\sqrt{22}}{3}$πD.$\frac{160\sqrt{5}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,点P是?ABCD边AB上的一点,射线CP交DA的延长线于点E,若$\frac{AP}{CD}$=$\frac{2}{5}$,则$\frac{{S}_{△AEP}}{{S}_{△BCP}}$=$\frac{4}{9}$.

查看答案和解析>>

同步练习册答案