精英家教网 > 高中数学 > 题目详情
9.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集{x|x<-$\frac{3}{a}$}.

分析 若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,则△=4a2-4(a-2)(a+1)<0,解得a的范围后,可得ax+3>0的解集.

解答 解:若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,
则△=4a2-4(a-2)(a+1)<0,
解得:a<-2,
故ax+3>0的解集为:{x|x<-$\frac{3}{a}$}
故答案为:{x|x<-$\frac{3}{a}$}

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设方程x2=2x的根的个数为a,方程sinx=lgx的根的个数为b,则a与b的大小关系是(  )
A.a>bB.a<bC.a=bD.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)是R上的偶函数,且在x≤0上是减函数,若f(2x)>f($\frac{1}{2}$),则实数x的取值范围是(  )
A.x<-1B.x>-1C.x≤-1D.x≥-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.正方体ABCD-A1B1C1D1的棱长为6,半径为$\sqrt{6}$的圆O1在平面A1B1C1D1内,其圆心O1为正方形A1B1C1D1的中心,P为圆O1上有一个动点,则多面体PABCD的外接球的表面积为(  )
A.88πB.80πC.$\frac{88\sqrt{22}}{3}$πD.$\frac{160\sqrt{5}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要得到函数f(x)=2sinxcosx,x∈R的图象,只需将函数g(x)=2cos2x-1,x∈R的图象(  )
A.向左平移$\frac{π}{2}$个单位B.向右平移$\frac{π}{2}$个单位
C.向左平移$\frac{π}{4}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若集合A={x|x2-2x-8<0},B={x|x2-2mx+m2-4≤0}.
(1)若m=3,全集U=R,试求A∩∁UB;
(2)若A∩B=∅,求实数m的取值范围;
(3)若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设等差数列{an}的前n项和为Sn,且满足S2015>0,S2016<0,则前n项和Sn取最大值时n的值为(  )
A.1009B.1008C.1007D.1006

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,点P是?ABCD边AB上的一点,射线CP交DA的延长线于点E,若$\frac{AP}{CD}$=$\frac{2}{5}$,则$\frac{{S}_{△AEP}}{{S}_{△BCP}}$=$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}$+y2=1(a>0)的左右焦点分别为F1,F2,过椭圆C的右顶点和上顶点的直线l与圆x2+y2=$\frac{2}{3}$相切,椭圆C过点P(1,$\frac{{\sqrt{2}}}{2}$),直线PF1交y轴于Q,且$\overrightarrow{P{F_2}}$=2$\overrightarrow{QO}$,O为坐标原点.
(1)求椭圆C的方程;
(2)设M是椭圆C的上顶点,过点M分别作直线MA、MB交椭圆C于A、B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:证明AB过定点.

查看答案和解析>>

同步练习册答案