精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

【答案】

【解析】试题分析:由于圆C的方程为(x-42+y2=1,由题意可知,只需(x-42+y2=4与直线y=kx-2有公共点即可。解:C的方程为x2+y2-8x+15=0,整理得:(x-42+y2=1,即圆C是以(40)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,只需圆C:(x-42+y2=4与直线y=kx-2有公共点即可.设圆心C40)到直线y=kx-2的距离为d

3k2≤4k0≤k≤,故可知参数k的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为,设直线的斜率是,且与椭圆交于 两点.

Ⅰ)求椭圆的标准方程.

Ⅱ)若直线轴上的截距是,求实数的取值范围.

Ⅲ)以为底作等腰三角形,顶点为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,a,b,c分别是△ABC三个内角A,B,C的对边,下列四个命题:
①若tanA+tanB+tanC>0,则△ABC是锐角三角形
②若acoA=bcosB,则△ABC是等腰三角形
③若bcosC+ccosB=b,则△ABC是等腰三角形
④若 = ,则△ABC是等边三角形
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数f(x)=4sin(2x+ )(x∈R),有下列命题:
①y=f(x)的表达式可改写为y=4cos(2x﹣ );
②y=f(x)是以2π为最小正周期的周期函数;
③y=f(x)的图象关于点 对称;
④y=f(x)的图象关于直线x=﹣ 对称.
其中正确的命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,a,b,c分别是角A,B,C的对边,且a=80,b=100,A= ,则此三角形是(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.锐角或钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差不为零,a1=25,且a1 , a11 , a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A′B′C′D′.

(1)设M,N分别是A′D′,A′B′的中点,试在下列三个正方体中各作出一个过正方体顶点且与平面AMN平行的平面(不用写过程)
(2)设S是B′D′的中点,F,G分别是DC,SC的中点,求证:直线GF∥平面BDD′B′.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,f(0)=0,求出函数f(x)的零点;
(2)若f(x)同时满足下列条件:①当x=﹣1时,函数f(x)有最小值0,②f(1)=1求函数f(x)的解析式;
(3)若f(1)≠f(3),证明方程f(x)= [f(1)+f(3)]必有一个实数根属于区间(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照5%的比例进行分层抽样,统计结果按 分组,整理如下图:

(Ⅰ)写出频率分布直方图(图乙)中的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为 ,试比较的大小(只需写出结论);

(Ⅱ)从甲种酸奶日销售量在区间的数据样本中抽取3个,记在内的数据个数为,求的分布列;

(Ⅲ)估计1200个日销售量数据中,数据在区间中的个数.

查看答案和解析>>

同步练习册答案