【题目】为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
【答案】解:(Ⅰ)设图中从左到右的前3个小组的频率分别为x,2x,3x, 则x+2x+3x+(0.037+0.013)×5=1,
解得x=0.125,
∵第2小组的频数为12,频率为2x=0.25,
∴该校报考飞行员的总人数为: =48(人).
(Ⅱ)体重超过60公斤的学生的频率为1﹣0.125×3=0.625,
∴X的可能取值为0,1,2,3,且X~B(3,0.625),
P(X=0)= (0.375)3=0.052734375,
P(X=1)= =0.263671875,
P(X=2)= =0.439453125,
P(X=3)= =0.244140625,
∴X的分布列为:
X | 0 | 1 | 2 | 3 |
P | 0.052734375 | 0.263671875 | 0.439453125 | 0.244140625 |
EX=3×0.625=1.875
【解析】(Ⅰ)设图中从左到右的前3个小组的频率分别为x,2x,3x,由频率分布直方图的性质求出第2小组的频数为12,频率为2x=0.25,由此能求出该校报考飞行员的总人数.(Ⅱ)体重超过60公斤的学生的频率为0.625,X的可能取值为0,1,2,3,且X~B(3,0.625),由此能求出X的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】设海拔x m处的大气压强是 y Pa,y与 x 之间的函数关系式是 y=cekx,其中c,k为常量,已知某地某天在海平面的大气压为1.01×105 Pa,1 000 m高空的大气压为0.90×105 Pa,求600 m高空的大气压强(精确到0.001).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
(1)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:
试根据图表中的信息解答下列问题:
(1)求全班的学生人数及分数在[70,80)之间的频数;
(2)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中,成绩位于[70,80)分数段的人数X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)=loga(x+1)﹣loga(1﹣x),a>0 且 a≠1.
(1)判断 f(x)的奇偶性并予以证明;
(2)当 a>1 时,求使 f(x)>0 的 x 的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,四边形ADEF为梯形,AD//FE,∠AFE=60,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.
(1)求证:EG//平面ABF;
(2)求三棱锥B-AEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,给出如下命题:
①是所在平面内一定点,且满足,则是的垂心;
②是所在平面内一定点,动点满足,,则动点一定过的重心;
③是内一定点,且,则;
④若且,则为等边三角形,
其中正确的命题为_____(将所有正确命题的序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com