精英家教网 > 高中数学 > 题目详情
6.已知集合M={x|x2-2x-3<0},N={x∈N||x|≤3},P=M∩N,则P中所有元素的和为(  )
A.6B.5C.3D.2

分析 先分别求出集合M,N,从而求出P=M∩N={0,1,2},由此能求出P中所有元素的和.

解答 解:∵集合M={x|x2-2x-3<0}={x|-1<x<3},
N={x∈N||x|≤3}={0,1,2,3},
∴P=M∩N={0,1,2},
∴P中所有元素的和为:0+1+2=3.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知A,B均为钝角,且sinA=$\frac{{\sqrt{5}}}{5},sinB=\frac{{\sqrt{10}}}{10}$,求A+B的值为$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+ax+1}{x}$.
(1)若对任意x>0,f(x)<0恒成立,求实数a的取值范围;
(2)若函数f(x)有两个不同的零点x1,x2(x1<x2),证明:x12+x22>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}和{bn}满足:${a_{n+k}}-{({-1})^k}•{a_n}={b_n}(n∈{N^*})$.
(1)若$k=1,{a_1}=1,{b_n}={2^n}$,求数列{an}的通项公式;
(2)若k=4,bn=8,a1=4,a2=6,a3=8,a4=10.
①求证:数列{an}为等差数列;
②记数列{an}的前n项和为Sn,求满足${({{S_n}+1})^2}-\frac{3}{2}{a_n}+33={k^2}$的所有正整数k和n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x),g(x)是定义在R上的一个奇函数和偶函数,且f(x-1)+g(x-1)=2x,则函数f(x)=2x-2-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的内角A,B,C对边分别为a,b,c,若满足$\frac{2c-b}{a}$=$\frac{cosB}{cosA}$,且$a=2\sqrt{5}$,则△ABC面积的最大值5$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=x+2y的最大值与最小值的差为(  )
A.3B.4C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点P($\sqrt{3}$,1)且离心率为$\frac{\sqrt{6}}{3}$,F为椭圆的右焦点,过F的直线交椭圆C于M,N两点,定点A(-4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AMN面积为3$\sqrt{3}$,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=90°,四边形ABCD是平行四边形,且PA=AD=2,AB=1,E是线段PD的中点.
( 1 ) 求证:AE⊥PC;
(2)是否存在正实数λ,满足$\overrightarrow{PM}=λ\overrightarrow{MC}$,使得二面角M-BD-C的大小为600?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案