精英家教网 > 高中数学 > 题目详情
19.定积分${∫}_{-1}^{1}$x2dx=(  )
A.0B.$\frac{2}{3}$C.1D.2

分析 根据定积分的计算法则计算即可

解答 解:定积分${∫}_{-1}^{1}$x2dx=$\frac{1}{3}{x}^{3}$|${\;}_{-1}^{1}$=$\frac{1}{3}$(1+1)=$\frac{2}{3}$,
故选:A.

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax 2+a 2x+2b-a 3,当x∈(-2,6)时,f(x)>0,当x∈(-∞,-2)∪(6,+∞)时,f(x)<0,
(1)求f(x)的解析式.
(2)求f(x)在区间[1,10]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某机构其中初级职务干部63人,中级职务干部42人,高级职务干部22人,上级部门为了了解该机构对某项改革的意见,要从中抽取28人,最适合抽取样本的方法(  )
A.系统抽样
B.简单随机抽样
C.分层抽样
D.先从高级职务干部中剔除1人,再用分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.己知函数f(x)=a(x-$\frac{1}{x}$)-2lnx,其中a∈R.
(1)若f(x)有极值,求a的取值范围;
(2)讨论(x)的零点个数,并说明理由.(参考数值:ln2≈0.6931)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l:(2λ+1)x+(λ+2)y+2λ+2=0(λ∈R),有下列四个结论:
①直线l经过定点(0,-2);
②当λ∈[1,4+3$\sqrt{3}$]时,直线l的倾斜角θ∈[120°,135°];
③若直线l在x轴和y轴上的截距相等,则λ=1;
④当λ∈(0,+∞)时,直线l与两坐标轴围成的三角形面积的最小值为$\frac{8}{9}$.
其中正确结论的是②④(填上你认为正确的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3-3x2-3x+2.
(1)点M(-1,f(-1))处的切线方程;
(2)讨论函数y=f(x)的单调区间,并求函数y=f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.打开“几何画板”软件进行如下操作:
①用画图工具在工作区画一个大小适中的圆C;
②用取点工具分别在圆C上和圆C外各取一个点A,B;
③用构造菜单下对应命令作出线段AB的垂直平分线l;
④作出直线AC.
设直线AC与直线l相交于点P,当点B为定点,点A在圆C上运动时,点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{1}{5}$,求tanα的值
(2)化简:$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$(α为第四象限角)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.f(x)=x3-ax2+a(a>0)有且只有一个零点,则a的范围为(  )
A.$(0,\frac{3}{2})$B.$(0,\frac{{3\sqrt{3}}}{2})$C.$(0,\frac{{\sqrt{3}}}{2})$D.以上都不对

查看答案和解析>>

同步练习册答案