分析 (1)由条件直接利用同角三角函数的基本关系,求得要求式子的值.
(2)利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,化简要求的式子可的结果.
解答 解:(1)∵已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{tanα-1}{2tanα+3}$=$\frac{1}{5}$,∴tanα=$\frac{8}{3}$
(2)∵α为第四象限角,∴$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$=$\sqrt{\frac{{(1+cosα)}^{2}}{{sin}^{2}α}}$+$\sqrt{\frac{{(1-cosα)}^{2}}{{sin}^{2}α}}$=|$\frac{1+cosα}{sinα}$|+|$\frac{1-cosα}{sinα}$|
=-$\frac{1+cosα}{sinα}$-$\frac{1-cosα}{sinα}$=$\frac{-2}{sinα}$.
点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 是锐角三角形 | B. | 是直角三角形 | C. | 是钝角三角形 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{8}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 2 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\sqrt{3},1)∪(\sqrt{3},+∞)$ | B. | $(-∞,-1)∪(\sqrt{3},+∞)$ | C. | $(-∞,-\sqrt{3})∪(\sqrt{3},+∞)$ | D. | $(-\sqrt{3},-1)∪(1,\sqrt{3})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com