精英家教网 > 高中数学 > 题目详情
3.下列命题中正确的命题个数是(  )
①若直线a∥b,b∥c,则a∥c;    
②若直线a∥b,b?α,则a∥α
③若直线a⊥α,直线b?α,则a⊥b
④若直线a⊥m,b⊥n,m与n为平面α内两相交直线,则a⊥α
A.4B.3C.2D.1

分析 ①根据平行公理,可得若直线a∥b,b∥c,则a∥c;    
②若直线a∥b,b?α,则a∥α或a?α;
③若直线a⊥α,直线b?α,根据线面垂直的性质定理,可得结论;
④若直线a⊥m,b⊥n,m与n为平面α内两相交直线,根据线面垂直的判断定理,可得结论.

解答 解:①根据平行公理,可得若直线a∥b,b∥c,则a∥c,正确;    
②若直线a∥b,b?α,则a∥α或a?α,不正确;
③若直线a⊥α,直线b?α,根据线面垂直的性质定理,可得a⊥b,正确;
④若直线a⊥m,b⊥n,m与n为平面α内两相交直线,根据线面垂直的判断定理,可得a⊥α,正确.
故选B.

点评 空间点、线、面的位置关系.这类试题一般称之为空间点线面位置关系的组合判断题,主要考查对空间点、线、面位置关系的概念、定理,考查特例反驳和结论证明,特别是把空间平行关系和垂直关系的相关定理中抽掉一些条件的命题,其目的是考查考生对这些定理掌握的熟练程度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知复数z满足$\frac{1+2i}{z}$=i(i为虚数单位),则z的共轭复数的虚部为(  )
A.2B.iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l:(2λ+1)x+(λ+2)y+2λ+2=0(λ∈R),有下列四个结论:
①直线l经过定点(0,-2);
②当λ∈[1,4+3$\sqrt{3}$]时,直线l的倾斜角θ∈[120°,135°];
③若直线l在x轴和y轴上的截距相等,则λ=1;
④当λ∈(0,+∞)时,直线l与两坐标轴围成的三角形面积的最小值为$\frac{8}{9}$.
其中正确结论的是②④(填上你认为正确的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.打开“几何画板”软件进行如下操作:
①用画图工具在工作区画一个大小适中的圆C;
②用取点工具分别在圆C上和圆C外各取一个点A,B;
③用构造菜单下对应命令作出线段AB的垂直平分线l;
④作出直线AC.
设直线AC与直线l相交于点P,当点B为定点,点A在圆C上运动时,点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=log0.5(x-1)的定义域是(  )
A.[1,+∞)B.(-∞,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{1}{5}$,求tanα的值
(2)化简:$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$(α为第四象限角)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC三个角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列.
(Ⅰ)求角B的取值范围;
(Ⅱ)设f(x)=3sinx+4cosx,求f(B)的最大值及f(B)取得最大值时tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=sin(\frac{7π}{6}-2x)+2{cos^2}x-1$
(Ⅰ)求函数f(x)在区间$[-\frac{π}{2},\frac{π}{12}]$上的最大值和最小值;
(Ⅱ)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知函数f(x)的图象经过点$(A,\frac{1}{2})$,b、a、c成等差数列,且△ABC的面积为$\frac{{9\sqrt{3}}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线4x+y=4,mx+y=0和2x-3my=4不能构成三角形,则m的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案