精英家教网 > 高中数学 > 题目详情
17.如图所示的函数$f(x)=2sin(wx+φ)(w>0,\frac{π}{2}≤φ≤π)$的部分图象,其中A、B两点之间的距离为5,那么f(-1)=(  )
A.-1B.2C.-2D.2

分析 根据题意,求出函数的半周期,计算ω的值,再求出φ的值,写出f(x)的解析式,计算出f(-1)的值.

解答 解:根据题意,A,B两点之间的距离为5,A,B两点的纵坐标的差为4,
所以函数的半周期为$\frac{1}{2}$T=$\sqrt{{5}^{2}{-4}^{2}}$=3,解得T=6;
则ω=$\frac{2π}{T}$=$\frac{π}{3}$,
函数解析式为f(x)=2sin($\frac{π}{3}$x+φ);
由f(0)=1,得2sinφ=1,∴sinφ=$\frac{1}{2}$;
又$\frac{π}{2}$≤φ≤π,∴φ=$\frac{5π}{6}$;
则f(x)=2sin($\frac{π}{3}$x+$\frac{5π}{6}$).
∴f(-1)=2sin(-$\frac{π}{3}$+$\frac{5π}{6}$)=2sin$\frac{π}{2}$=2.
故选:D.

点评 本题考查了由函数y=Asin(ωx+φ)的部分图象求函数解析式,解决此类问题的方法是先由图象看出振幅和周期,由周期求出ω,然后利用五点作图的某一点求φ,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.己知函数f(x)=a(x-$\frac{1}{x}$)-2lnx,其中a∈R.
(1)若f(x)有极值,求a的取值范围;
(2)讨论(x)的零点个数,并说明理由.(参考数值:ln2≈0.6931)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{1}{5}$,求tanα的值
(2)化简:$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$(α为第四象限角)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球中有黄球的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=sin(\frac{7π}{6}-2x)+2{cos^2}x-1$
(Ⅰ)求函数f(x)在区间$[-\frac{π}{2},\frac{π}{12}]$上的最大值和最小值;
(Ⅱ)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知函数f(x)的图象经过点$(A,\frac{1}{2})$,b、a、c成等差数列,且△ABC的面积为$\frac{{9\sqrt{3}}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合$A=\left\{{x|{3^{x(x-3)}}<1}\right\},B=\left\{{x|y=\sqrt{{{log}_2}(x-1)}}\right\}$,则A∩B={x|2≤x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.f(x)=x3-ax2+a(a>0)有且只有一个零点,则a的范围为(  )
A.$(0,\frac{3}{2})$B.$(0,\frac{{3\sqrt{3}}}{2})$C.$(0,\frac{{\sqrt{3}}}{2})$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\sqrt{6+x-{x^2}}$的单调减区间是[$\frac{1}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数h(x)=x2+ax+b在(0,1)上有两个不同的零点,记min{m,n}=$\left\{\begin{array}{l}m({m≤n})\\ n({m>n})\end{array}$,则min{h(0),h(1)}的取值范围为(0,$\frac{1}{4}$).

查看答案和解析>>

同步练习册答案