分析 (1)利用函数的零点,列出方程求解即可.
(2)利用二次函数的闭区间求解最值即可.
解答 解:(1)由题意得a<0,且x=-2,x=6是方程f(x)=0的两个根,由韦达定理得
$\left\{\begin{array}{l}{-2+6=-a}\\{-2×6=\frac{2b-{a}^{2}}{a}}\end{array}\right.$得 $\left\{\begin{array}{l}{a=-4}\\{b=-8}\end{array}\right.$,
∴.f(x)=-4x 2+16x+48 …(6分)
(2)f(x)=-4x 2+16x+48=-4(x-2)2+64,对称轴为x=2,开口向下,
∴f max(x)=f(2)=64
f min(x)=f(10)=-192 …(12分)
点评 本题考查二次函数的简单性质的应用,函数的解析式的求法,考查分析问题解决问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0]∪(1,+∞) | B. | (1,2] | C. | (1,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线l1和l2必定重合 | |
| B. | 直线l1和l2一定有公共点(s,t) | |
| C. | 直线l1∥l2 | |
| D. | 直线l1和l2相交,但交点不一定是(s,t) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{7}$ | C. | $\frac{1}{87}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 是锐角三角形 | B. | 是直角三角形 | C. | 是钝角三角形 | D. | 不存在 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com