【题目】函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<
)的部分图象如图所示
(1)求A,ω,φ的值;
(2)求图中a,b的值及函数f(x)的递增区间;
(3)若α∈[0,π],且f(α)=
,求α的值.
![]()
【答案】(1)
;(2)
,递增区间为
;(3)
或
.
【解析】
(1)利用函数图像可直接得出周期T和A,再利用
,求出
,
然后利用待定系数法直接得出
的值。
(2)通过第一问求得的值可得到
的函数解析式,令
,再根据a的位置确定出a的值;令
得到的函数值即为b的值;利用正弦函数单调增区间即可求出函数的单调增区间。
(3)令
结合
即可求得
的取值。
解:(1)由图象知A=2,
=
-(-
)=
,
得T=π,
即
=2,得ω=1,
又f(-
)=2sin[2×(-
)+φ]=-2,
得sin(-
+φ)=-1,
即-
+φ=-
+2kπ,
即ω=
+2kπ,k∈Z,
∵|φ|<
,
∴当k=0时,φ=
,
即A=2,ω=1,φ=
;
(2)a=-
-
=-
-
=-
,
b=f(0)=2sin
=2×
=1,
∵f(x)=2sin(2x+
),
∴由2kπ-
≤2x+
≤2kπ+
,k∈Z,
得kπ-
≤x≤kπ+
,k∈Z,
即函数f(x)的递增区间为[kπ-
,kπ+
],k∈Z;
(3)∵f(α)=2sin(2α+
)=
,
即sin(2α+
)=
,
∵α∈[0,π],
∴2α+
∈[
,
],
∴2α+
=
或
,
∴α=
或α=
.
科目:高中数学 来源: 题型:
【题目】为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品。已知该单位每月的处理量最多不超过300吨,月处理成本
(元)与月处理量
(吨)之间的函数关系式可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为300元。
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).
(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱柱
的所有棱长都相等,
分别为
的中点.现有下列四个结论:
:
;
:
;
:
平面
;
:异面直线
与
所成角的余弦值为
.
其中正确的结论是
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com