精英家教网 > 高中数学 > 题目详情

【题目】函数fx)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示

(1)求A,ω,φ的值;

(2)求图中ab的值及函数fx)的递增区间;

(3)若α∈[0,π],且f(α)=,求α的值.

【答案】(1);(2),递增区间为;(3).

【解析】

(1)利用函数图像可直接得出周期TA,再利用,求出

然后利用待定系数法直接得出的值。

(2)通过第一问求得的值可得到的函数解析式,令,再根据a的位置确定出a的值;令得到的函数值即为b的值;利用正弦函数单调增区间即可求出函数的单调增区间。

(3)令结合即可求得的取值。

解:(1)由图象知A=2,=-(-)=

T=π,

=2,得ω=1,

f(-)=2sin[2×(-)+φ]=-2,

得sin(-+φ)=-1,

即-+φ=-+2kπ,

即ω=+2kπ,kZ

∵|φ|<

∴当k=0时,φ=

A=2,ω=1,φ=

(2)a=--=--=-

b=f(0)=2sin=2×=1,

fx)=2sin(2x+),

∴由2kπ-≤2x+≤2kπ+kZ

kπ-xkπ+kZ

即函数fx)的递增区间为[kπ-kπ+],kZ

(3)∵f(α)=2sin(2α+)=

即sin(2α+)=

∵α∈[0,π],

∴2α+∈[],

∴2α+=

∴α=或α=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数,.

)求的定义域;

)判断的奇偶性并予以证明;

)当时,求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.

(1)f(log2)的值;

(2)f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品。已知该单位每月的处理量最多不超过300吨,月处理成本(元)与月处理量(吨)之间的函数关系式可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为300元。

1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,分别为的中点.

1)求证:平面

2)求直线与面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).

(1)分别将A、B两产品的利润表示为投资量的函数关系式;

(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点)处的切线方程是.

(I)求的值及函数的最大值

(Ⅱ)若实数满足.

()证明:;

()若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱的所有棱长都相等,分别为的中点.现有下列四个结论:

平面:异面直线所成角的余弦值为.

其中正确的结论是

A. B. C. D.

查看答案和解析>>

同步练习册答案