【题目】某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).
(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
【答案】(1)见解析;(2)2.8万元
【解析】
试题分析:(1)由于A产品的利润y与投资量x成正比例,B产品的利润y与投资量x的算术平方根成正比例,故可设函数关系式,利用图象中的特殊点,可求函数解析式;
(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业利润为y万元.利用(1)由此可建立函数,采用换元法,转化为二次函数.利用配方法求函数的最值.
解:(1)设投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元.
由题意设f(x)=k1x,.由图知,∴
又g(4)=1.6,∴.从而,
(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业利润为y万元.
(0≤x≤10)
令,则=
当t=2时,,此时x=10﹣4=6
答:当A产品投入6万元,则B产品投入4万元时,
该企业获得最大利润,利润为2.8万元.
科目:高中数学 来源: 题型:
【题目】已知下列四个命题:
①函数满足:对任意有;
②函数均为奇函数;
③若函数在上有意义,则的取值范围是;
④设是关于的方程,(且)的两根,则;
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,AA1=1,底面三角形A1B1C1是边长为2的正三角形,E是BC中点,则下列说法正确的是( )
①CC1与AB1所成角的余弦值为
②AB⊥平面ACC1A1
③三角形AB1E为直角三角形
④A1C1∥平面AB1E
A.①②B.③④C.①③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示
(1)求A,ω,φ的值;
(2)求图中a,b的值及函数f(x)的递增区间;
(3)若α∈[0,π],且f(α)=,求α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数定义在上且满足下列两个条件:
①对任意都有;
②当时,有,
(1)求,并证明函数在上是奇函数;
(2)验证函数是否满足这些条件;
(3)若,试求函数的零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】5名男生3名女生参加升旗仪式:
(1)站两横排,3名女生站前排,5名男生站后排有多少种站法?
(2)站两纵列,每列4人,每列都有女生且女生站在男生前面,有多少种排列方法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:
(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;
(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)
(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人.
(1)根据以上数据建立一个2×2的列联表;
(2)试判断能否有99.5%的把握认为“考试成绩与班级有关”?参考公式: ;n=a+b+c+d
P(>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com