精英家教网 > 高中数学 > 题目详情
已知
a
=(
3
sinx,m+cosx),
b
=(cosx,-m+cosx),且f(x)=
a
b
,其中m为常数.
(1)求函数f(x)的解析式;
(2)当x∈R,求f(x)的递增区间;
(3)当x∈[-
π
6
π
3
]时,f(x)的最小值是-4,求此时函数f(x)的最大值,并求出相应的x的值.
考点:平面向量的综合题
专题:平面向量及应用
分析:(1)由已知得f(x)=
3
sinxcosx
+cos2x-m2,由此能求出f(x)=sin(2x+
π
6
)+
1
2
-m2

(2)f(x)=sin(2x+
π
6
)+
1
2
-m2
的增区间满足-
π
2
+2kπ
≤2x+
π
6
π
2
+2kπ
,k∈Z,由此能求出f(x)的递增区间.
(3)由已知得f(-
π
6
)=sin(-
π
6
)+
1
2
-m2
=-m2=-4,解得m2=4,由此能求出当x=
π
6
时,f(x)max=f(
π
6
)=sin
π
2
+
1
2
-4
=-
5
2
解答: 解:(1)∵
a
=(
3
sinx,m+cosx),
b
=(cosx,-m+cosx),且f(x)=
a
b

∴f(x)=
3
sinxcosx
+cos2x-m2
=
3
2
sin2x
+
1
2
cos2x
+
1
2
-m2

=sin(2x+
π
6
)+
1
2
-m2

f(x)=sin(2x+
π
6
)+
1
2
-m2

(2)f(x)=sin(2x+
π
6
)+
1
2
-m2
的增区间满足:
-
π
2
+2kπ
≤2x+
π
6
π
2
+2kπ
,k∈Z,
解得-
π
3
+kπ≤x≤
π
6
+kπ
,k∈Z,
∴f(x)的递增区间为[-
π
3
+kπ,
 
π
6
+kπ](k∈Z)
,k∈Z.
(3)∵当x∈[-
π
6
π
3
]时,f(x)的最小值是-4,
∴f(-
π
6
)=sin(-
π
6
)+
1
2
-m2
=-m2=-4,
解得m2=4,
当x=
π
6
时,f(x)max=f(
π
6
)=sin
π
2
+
1
2
-4
=-
5
2
点评:本题考查函数的解析式的求法,考查函数的增区间的求法,考查函数的最大值的求法,是中档题,解题时要注意向量知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中若A=60°,B=45°,b=2
2
,则a为(  )
A、2
3
B、2
6
C、
3
8
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax-2x-1(x∈R).
(1)当a=0时,求f(x)的单调区间;
(2)求证:对任意实数a<0,有f(x)>
a2-a+1
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R)且g(-
1
2
)-g(1)=f(0).
(1)试求b,c所满足的关系式;
(2)若b=0,集合A={x|f(x)≥x|x-a|g(x)},试求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

通过随机询问36名不同性别的大学生在购买食品时是否看营养说明,得到如下的列联表:
总计
看营养说明81422
不看营养说明10414
总计181836
利用列联表的独立性检验估计看营养说明是否与性别有关?
参考数据当Χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
当Χ2>2.706时,有90%的把握判定变量A,B有关联;
当Χ2>3.841时,有95%的把握判定变量A,B有关联;
当Χ2>6.635时,有99%的把握判定变量A,B有关联.
(参考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x-4=0一条斜率等于1的直线l与圆C交于A,B两点,
(1)求弦AB最长时直线l的方程;
(2)求△ABC面积最大时直线l的方程;
(3)若坐标原点O在以AB为直径的圆内,求直线l在y轴上的截距范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明下列各题:
(1)证明:
3
5
7
不可能成等差数列;
(2)已知x,y,a,b都是实数,且x2+y2=1,a2+b2=1,求证:|ax+by|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+2|+|x-1|.
(1)解不等式f(x)≤-x2+4;
(2)当f(x)≥|a-1|对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosθ=
12
13
,θ∈(π,2π),求sin(θ-
π
6
)以及tan(θ+
π
4
)的值.

查看答案和解析>>

同步练习册答案