精英家教网 > 高中数学 > 题目详情
若点是以为焦点的椭圆上一点,
,则此椭圆的离心率
A

试题分析:如图,由得:,即有,又因为,所以,结合椭圆的特点得:,解得,另外,在三角形中,由勾股定理得:,即有,解得。故选A。

点评:解关于椭圆的问题,经常要用到椭圆的特点:椭圆上任一点到两焦点的距离之和等于
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
F是椭圆C的左焦点,直线l为其左准线,直线lx轴交于点P,线段MN为椭圆的长轴,已知
(1)   求椭圆C的标准方程;
(2)   若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN
(3)   求三角形ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.
已知的顶点在椭圆上,在直线上,

(1)求边中点的轨迹方程;
(2)当边通过坐标原点时,求的面积;
(3)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,一个焦点是,且两条准线间的距离为
(I)求椭圆的方程;
(II)若存在过点A(1,0)的直线,使点F关于直线的对称点在椭圆上,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知椭圆的离心率为,右焦点也是抛物线的焦点。     
(1)求椭圆方程;
(2)若直线相交于两点。
①若,求直线的方程;
②若动点满足,问动点的轨迹能否与椭圆存在公共点?若存在,求出点的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点
(1)求实数的取值范围;
(2)设椭圆与轴正半轴,轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面截圆柱体,截口是一条封闭曲线,且截面与底面所成的
角为30°,此曲线是          ,它的离心率为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知AB是椭圆的长轴,若把该长轴2010等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于点,设左焦点为,则=       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点F的直线交椭圆于点A、B,交其左准线于点C,若,则此直线的斜率为( )

A、         B、     C、    D、 

查看答案和解析>>

同步练习册答案