精英家教网 > 高中数学 > 题目详情
已知平面截圆柱体,截口是一条封闭曲线,且截面与底面所成的
角为30°,此曲线是          ,它的离心率为        .
椭圆,  
椭圆, ,椭圆的短轴长为圆柱底面直径2r,长轴长为,所以离心率为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点P与定点F的距离和它到定直线l:的距离之比是1 : 2.
(1)求点P的轨迹C方程;
(2)过点F的直线交曲线C于A, B两点, A, B在l上的射影分别为M, N.
求证AN与BM的公共点在x轴上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点是以为焦点的椭圆上一点,
,则此椭圆的离心率

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的左、右焦点分别为,抛物线的焦点为F。若,则此椭圆的离心率为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆上的动点,点Q在NP上,点G在MP上,且满足.
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)标准椭圆的两焦点为在椭圆上,且.  (1)求椭圆方程;(2)若N在椭圆上,O为原点,直线的方向向量为,若交椭圆于AB两点,且NANB轴围成的三角形是等腰三角形(两腰所在的直线是NANB),则称N点为椭圆的特征点,求该椭圆的特征点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的左右焦点分别为是椭圆右准线上的两个动点,且=0.
(1)设圆是以为直径的圆,试判断原点与圆的位置关系
(2)设椭圆的离心率为的最小值为,求椭圆的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线L交椭圆CAB两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为a.
(1)用半焦距c表示椭圆的方程及;
(2)若2<<3,求椭圆率心率e的取值范围.

查看答案和解析>>

同步练习册答案