精英家教网 > 高中数学 > 题目详情
若椭圆的左、右焦点分别为,抛物线的焦点为F。若,则此椭圆的离心率为         
由题意,有点的坐标为:点的坐标为:点的坐标为:,又因为,即:………..①,因为三点共线,有:即:………②,由①,②有:
,故其离心率
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设直线与椭圆相交于AB两个不同的点,与x轴相交于点C,记O为坐标原点.
(1)证明:
(2)若的面积取得最大值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
F是椭圆C的左焦点,直线l为其左准线,直线lx轴交于点P,线段MN为椭圆的长轴,已知
(1)   求椭圆C的标准方程;
(2)   若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN
(3)   求三角形ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知椭圆的离心率为,右焦点也是抛物线的焦点。     
(1)求椭圆方程;
(2)若直线相交于两点。
①若,求直线的方程;
②若动点满足,问动点的轨迹能否与椭圆存在公共点?若存在,求出点的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点
(1)求实数的取值范围;
(2)设椭圆与轴正半轴,轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆左焦点是,右焦点是,右准线是上一点,与椭圆交于点,满足,则等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,点的坐标满足过点的直线与椭圆交于两点,点为线段的中点,求:

(1)点的轨迹方程;
(2)点的轨迹与坐标轴的交点的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面截圆柱体,截口是一条封闭曲线,且截面与底面所成的
角为30°,此曲线是          ,它的离心率为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,以坐标轴为对称轴且经过两点,求椭圆的方程。

查看答案和解析>>

同步练习册答案