| A. | $\frac{4}{5}$ | B. | $\frac{{4\sqrt{3}-3}}{10}$ | C. | $\frac{{2\sqrt{3}-3}}{5}$ | D. | $\frac{{2\sqrt{3}+3}}{10}$ |
分析 利用同角三角函数的基本关系求得cos(α-$\frac{π}{6}$),再利用两角差的余弦公式求得cosα=cos[(α-$\frac{π}{6}$)+$\frac{π}{6}$]的值.
解答 解:∵α∈[0,$\frac{π}{2}$],sin(α-$\frac{π}{6}$)=$\frac{3}{5}$,则cos(α-$\frac{π}{6}$)=$\sqrt{{1-sin}^{2}(α-\frac{π}{6})}$=$\frac{4}{5}$,
∴cosα=cos[(α-$\frac{π}{6}$)+$\frac{π}{6}$]=cos(α-$\frac{π}{6}$)•cos$\frac{π}{6}$-sin(α-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{4}{5}$•$\frac{\sqrt{3}}{2}$-$\frac{3}{5}$•$\frac{1}{2}$=$\frac{4\sqrt{3}-3}{10}$,
故选:B.
点评 本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com