精英家教网 > 高中数学 > 题目详情
如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
(1)求证:CE2=CD•CB;
(2)若AB=BC=2,求CE和CD的长.
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:(1)要证CE2=CD•CB,结合题意,只需证明△CED∽△CBE即可,故连接BE,利用弦切角的知识即可得证;
(2)在Rt三△OBC中,利用勾股定理即可得出CE的长,由(1)知,CE2=CD•CB,代入CE即可得出CD的长.
解答: (1)证明:连接BE.
∵BC为⊙O的切线∴∠ABC=90°
∵AB为⊙O的直径∴∠AEB=90°                   …(2分)
∴∠DBE+∠OBE=90°,∠AEO+∠OEB=90°
∵OB=OE,∴∠OBE=∠OEB∴∠DBE=∠AEO        …(4分)
∵∠AEO=∠CED∴∠CED=∠CBE,
∵∠C=∠C∴△CED∽△CBE,
CE
CB
=
CD
CE
,∴CE2=CD•CB       …(6分)
(2)解:∵OB=1,BC=2,∴OC=
5
,∴CE=OC-OE=
5
-1         …(8分)
由(1)CE2=CD•CB得:(
5
-1)2=2CD,∴CD=3-
5
     …(10分)
点评:本题主要考查了切线的性质及其应用,同时考查了相似三角形的判定和解直角三角形等知识点,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线y=
1
8
x2的焦点坐标为(  )
A、(0,2)
B、(0,
1
32
C、(2,0)
D、(
1
32
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=
m(x+1)-2
3mx2+4mx+3
的定义域为R,则实数m的取值范围是(  )
A、(0,
3
4
]
B、(0,
3
4
C、[0,
3
4
]
D、[0,
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,
BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求三棱锥A-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=sin(2x+
π
6
)cos(2x+
π
6
)的最值,周期及单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,F是C1C上一点,且CF=2a.
(1)求证:B1F⊥平面ADF;
(2)求C点到平面AFD的距离;
(3)试在棱AA1上找一点E,使得BE∥平面ADF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图AD,BC,AE分别是⊙O的三条切线,切点分别是D,E,F,AG是⊙O的一条割线,交⊙O于F,G两点,△ABC的周长2
3
,⊙O的半径为1.
(1)求证:AF•AG=3;
(2)求AF2+FG2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥A-BCDE,平面ABC⊥平面BCDE,△ABC边长为2的等边三角形,底面BCDE是矩形,且CD=
2

(Ⅰ)若点G是AE的中点,求证:AC∥平面BDG;
(Ⅱ)试问点F在线段AB上什么位置时,二面角B-CE-F的大小为
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知阶矩阵A=
12
21
,向量β=
2
2

(1)求阶矩阵A的特征值和特征向量;
(2)计算A2β

查看答案和解析>>

同步练习册答案