精英家教网 > 高中数学 > 题目详情
如图,直三角棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)求平面A′MN与平面MNC的夹角.
考点:与二面角有关的立体几何综合题,直线与平面平行的判定
专题:综合题,空间位置关系与距离,空间角
分析:(1)连接AB′、AC′,说明三棱柱ABC-A′B′C′为直三棱柱,推出MN∥AC′,然后证明MN∥平面A′ACC′;
(2)建立直角坐标系,求出平面A′MN的法向量、平面MNC的法向量,利用向量的夹角公式,即可求出平面A′MN与平面MNC的夹角.
解答: (1)证明:连接AB′、AC′,
由已知∠BAC=90°,AB=AC,
三棱柱ABC-A′B′C′为直三棱柱,
所以M为AB′中点,
又因为N为B′C′的中点,
所以MN∥AC′,
又MN?平面A′ACC′,
因此MN∥平面A′ACC′;
(2)解:以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,如图,
A(0,0,0),B(
2
,0,0),C(0,
2
,0),A′(0,0,1),B′(
2
,0,1),C′(0,
2
,1).
所以M(
2
2
,0,
1
2
),N(
2
2
2
2
,1
),
m
=(x1,y1,z1)是平面A′MN的法向量,
m
A′M
=0
m
MN
=0
,得
2
2
x1-
1
2
z1=0
2
2
y1+
1
2
z1=0
,得
m
=(1,-1,
2
),
同理平面MNC的法向量
n
=(-3,-1,
2
),
所以
m
n
=0
所以平面A′MN与平面MNC的夹角为90°.
点评:本题以三棱柱为载体主要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若α∈(0,
π
4
),β∈(0,π)且tan(a-β)=
1
2
,tanβ=-
1
7
,则2α-β(  )
A、-
6
B、-
3
C、-
7
12
π
D、-
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠A为直角,AB边所在直线的方程为x-3y-6=0,点T(-1,1)在直线AC上,斜边中点为M(2,0).
(1)求BC边所在直线的方程;
(2)若动圆P过点N(-2,0),且与Rt△ABC的外接圆相交所得公共弦长为4,求动圆P中半径最小的圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
sin(
π
2
+x)sin(x+π)cos(x+
2
)
cos(x-
π
2
)sin(
2
-x)cos(2π-x)

(1)若f(x)=1,求x的取值构成的集合.
(2)若f(x)=2,求sinxcosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在圆内接四边形ABCD中,AC与BD交于点E,过点A作圆的切线交CB的延长线于点F.若AB=AD,AF=18,BC=15,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x-a
+
λ
x-b
(a,b,λ为实常数).
(1)若λ=-1,a=1.
①当b=-1时,求函数f(x)的图象在点(
2
,f(
2
))处的切线方程;
②当b<0时,求函数f(x)在[
1
3
1
2
]上的最大值.
(2)若λ=1,b<a,求证:不等式f(x)≥1的解集构成的区间长度D为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形ABC中,三内角为A、B、C,
a
=(
3
cosA,sinA),
b
=(cosB,
3
sinB),
c
=(1,-1).
(1)若
a
c
=1,求角A的大小;
(2)若
a
b
,求当A-B取最大时,A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明下列命题:
(1)若函数f(x)可导且为周期函数,则f′(x)也为周期函数;
(2)可导的奇函数的导函数是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

红、黄、蓝三色灯泡分别有3、2、2支,把它们挂成一排,要求红色灯泡不能全部相邻,则看到的不同效果有
 
个.

查看答案和解析>>

同步练习册答案