精英家教网 > 高中数学 > 题目详情
1.如果有一集合含有三个元素1,x,x2-x,则实数x的取值范围是{x|x≠1,且$x≠\frac{1±\sqrt{5}}{2}$,且x≠0,且x≠2}.

分析 由集合元素的互异性,便可得到该集合的元素满足两两不等,即满足$\left\{\begin{array}{l}{x≠1}\\{{x}^{2}-x≠1}\\{{x}^{2}-x≠x}\end{array}\right.$,解该不等式组即可得出实数x的取值范围.

解答 解:根据集合元素的互异性,x需满足:
$\left\{\begin{array}{l}{x≠1}\\{{x}^{2}-x≠1}\\{{x}^{2}-x≠x}\end{array}\right.$;
解得x≠1,且$x≠\frac{1±\sqrt{5}}{2}$,且x≠0,且x≠2;
∴实数x的取值范围为:{x|x$≠1,且x≠\frac{1±\sqrt{5}}{2},且x≠0,且x≠2$}.
故答案为:{x|x≠1,且$x≠\frac{1±\sqrt{5}}{2}$,且x≠0,且x≠2}.

点评 考查集合、元素的概念,以及集合元素的互异性,注意本题中的元素需满足两两不相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知集合M={x|x=$\frac{k}{4}+\frac{1}{6}$,k∈Z},集合N={x|x=$\frac{k}{3}$+$\frac{1}{4}$,k∈Z},试求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点A(2,m),B(m+1,3),若向量$\overrightarrow{OA}$与$\overrightarrow{OB}$共线(O为坐标原点),则实数m的值为(  )
A.2B.-3C.2或-3D.$-\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\frac{1}{\sqrt{2-x}}$的定义域为M,g(x)=$\sqrt{x+2}$的定义域为N,则M∩N=(  )
A.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若sinx+siny=1-$\frac{\sqrt{3}}{2}$,cosx+cosy=$\frac{1}{2}$,那么cos(x-y)=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A(0,$\frac{\sqrt{15}}{2}$),B($\frac{1}{2}$,0),以线段AB为边,在第一象限内作正三角形ABC,一次函数y=kx+b的图象经过点C,与x轴,y轴分别交于D、E,且ED∥AB.
(1)求线段OE及BD的长;
(2)求一次函数y=kx+b的解析式;
(3)如果S△ABP=S△ABC,且点P(a,4$\sqrt{3}$)(a>0),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sin($\frac{π}{4}$+α)=$\frac{\sqrt{3}}{3}$,求sin(-$\frac{5π}{4}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=log${\;}_{\frac{1}{2}}$$\frac{x-2}{x+2}$;
(Ⅰ)求函数f(x)的定义域,再判断奇偶性并说明理由;
(Ⅱ)试探究函数f(x)在区间(2,+∞)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合A={x|$\frac{6}{x+1}$>1,x∈R},B={x|x2+mx+m2-7<0,x∈R,m∈R},C={y|y=$\frac{{x}^{2}}{{x}^{2}+1}$,x∈R}
(Ⅰ)若集合A∩B=(-1,2),求m的值;
(Ⅱ)若C∪B=B,求m的取值范围.

查看答案和解析>>

同步练习册答案